On the Cross-Entropic Regularization Method for Solving Min-Max Problems

被引:0
|
作者
Zhang, Lili [1 ]
Li, Jianyu [2 ]
Li, Xingsi [3 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian, Peoples R China
[2] Tianjin Univ Sci & Technol, Sch Mech Engn, Tianjin, Peoples R China
[3] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Min-Max Problem; Cross-Entropic Regularization; Smooth Approximation; Subgradient; Condition Number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A smoothing method of multipliers which is a natural result of cross-entropic regularization for min-max problems is analyzed. As a smoothing technique, we first show how the smooth approximation yields the first order information on the behavior of max function. Then under suitable assumptions, some basic properties including the Hessian are given. At last, the condition number is analyzed, and the results reveal that the smoothing method of multipliers is stable for any fixed smoothing parameter.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 50 条
  • [41] ON SOLVING MIN-MAX PROBLEMS IN THE THREE-DIMENSIONAL LAYOUT OPTIMIZATION PROBLEM
    Tie Jun
    Pi Linjiang
    Liu Qiang
    PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON COMPUTERS AND INDUSTRIAL ENGINEERING, VOLS 1-3, 2008, : 92 - 96
  • [42] New exact penalty function for solving constrained finite min-max problems
    Cheng Ma
    Xun Li
    Ka-Fai Cedric Yiu
    Lian-sheng Zhang
    Applied Mathematics and Mechanics, 2012, 33 : 253 - 270
  • [43] Max-min and min-max approximation problems for normal matrices revisited
    Liesen, Jörg
    Tichý, Petr
    1600, Kent State University (41): : 159 - 166
  • [44] MAX-MIN AND MIN-MAX APPROXIMATION PROBLEMS FOR NORMAL MATRICES REVISITED
    Liesen, Joerg
    Tichy, Petr
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2014, 41 : 159 - 166
  • [45] A MIN-MAX METHOD OF ISOTOPE PRODUCTION
    ECKHOFF, ND
    FAN, LT
    KIMEL, WR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1968, 11 (01): : 96 - &
  • [46] A NEW COMPUTATIONAL METHOD FOR STACKELBERG AND MIN-MAX PROBLEMS BY USE OF A PENALTY METHOD
    SHIMIZU, K
    AIYOSHI, E
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (02) : 460 - 466
  • [47] Complexity of the min-max (regret) versions of min cut problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    DISCRETE OPTIMIZATION, 2008, 5 (01) : 66 - 73
  • [48] Robust min-max regret covering problems
    Coco, Amadeu A.
    Santos, Andrea Cynthia
    Noronha, Thiago F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 111 - 141
  • [49] A SUPERLINEARLY CONVERGENT ALGORITHM FOR MIN-MAX PROBLEMS
    POLAK, E
    MAYNE, DQ
    HIGGINS, JE
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 894 - 898
  • [50] Online learning for min-max discrete problems
    Bampis, Evripidis
    Christou, Dimitris
    Escoffier, Bruno
    NGuyen, Kim Thang
    THEORETICAL COMPUTER SCIENCE, 2022, 930 : 209 - 217