QUANTIZING A GENERIC FAMILY OF BILLIARDS WITH ANALYTIC BOUNDARIES

被引:163
|
作者
ROBNIK, M
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1984年 / 17卷 / 05期
关键词
D O I
10.1088/0305-4470/17/5/027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1049 / 1074
页数:26
相关论文
共 50 条
  • [41] Charge and spin transport on graphene grain boundaries in a quantizing magnetic field
    Phillips, Madeleine
    Mele, E. J.
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [42] Generic boundaries in the Ophiostomatales reconsidered and revised
    de Beer, Z. W.
    Procter, M.
    Wingfield, M. J.
    Marincowitz, S.
    Duong, T. A.
    STUDIES IN MYCOLOGY, 2022, (101) : 57 - +
  • [43] Generic involutiveness of analytic differential systems
    Malgrange, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 863 - 866
  • [44] Geometric properties of integrable Kepler and Hooke billiards with conic section boundaries
    Jaud, Daniel
    Zhao, Lei
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 204
  • [45] Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries
    Loskutov, AY
    Ryabov, AB
    Akinshin, LG
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (05) : 966 - 974
  • [46] Mechanism of Fermi acceleration in dispersing billiards with time-dependent boundaries
    A. Yu. Loskutov
    A. B. Ryabov
    L. G. Akinshin
    Journal of Experimental and Theoretical Physics, 1999, 89 : 966 - 974
  • [47] Marked Length Spectral determination of analytic chaotic billiards with axial symmetries
    Jacopo De Simoi
    Vadim Kaloshin
    Martin Leguil
    Inventiones mathematicae, 2023, 233 : 829 - 901
  • [48] Marked Length Spectral determination of analytic chaotic billiards with axial symmetries
    De Simoi, Jacopo
    Kaloshin, Vadim
    Leguil, Martin
    INVENTIONES MATHEMATICAE, 2023, 233 (02) : 829 - 901
  • [49] Analytic wavelets in domains with circular boundaries
    G. A. Dubosarskii
    Doklady Mathematics, 2013, 87 : 62 - 64
  • [50] Analytic wavelets in domains with circular boundaries
    Dubosarskii, G. A.
    DOKLADY MATHEMATICS, 2013, 87 (01) : 62 - 64