TRAVELING FRONT APPROXIMATIONS FOR INFILTRATION INTO STRATIFIED SOILS

被引:6
|
作者
WARRICK, AW
机构
[1] Department of Soil and Water Science, University of Arizona, Tucson
关键词
D O I
10.1016/0022-1694(91)90138-8
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Two approximations are developed for infiltration into a stratified soil profile. Both satisfy the initial conditions, give the correct water content at a given depth for large time, obey mass conservation and give the correct rate of advance for large time. The first is referred to as the 'square front' solution and is analogous to Green-Ampt theory in that the profile is either wet or dry without a transition zone. The second solution is based on a homogeneous analog for which Philip's solution for a profile at large time is invoked. Examples are given for surface boundary conditions both as a specified head and as a flux density.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 50 条
  • [31] Infiltration in soils with a saturated surface
    Hogarth, W. L.
    Lockington, D. A.
    Barry, D. A.
    Parlange, M. B.
    Haverkamp, R.
    Parlange, J. -Y.
    WATER RESOURCES RESEARCH, 2013, 49 (05) : 2683 - 2688
  • [32] A Taxonomy of Methods for Visualizing Pareto Front Approximations
    Filipic, Bogdan
    Tusar, Tea
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 649 - 656
  • [33] Two-Sided Pareto Front Approximations
    Kaliszewski, I.
    Miroforidis, J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (03) : 845 - 855
  • [34] Traveling ionospheric disturbances detected in the FRONT campaign
    Saito, A
    Nishimura, M
    Yamamoto, M
    Fukao, S
    Kubota, M
    Shiokawa, K
    Otsuka, Y
    Tsugawa, T
    Ogawa, T
    Ishii, M
    Sakanoi, T
    Miyazaki, S
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (04) : 689 - 692
  • [35] Two-Sided Pareto Front Approximations
    I. Kaliszewski
    J. Miroforidis
    Journal of Optimization Theory and Applications, 2014, 162 : 845 - 855
  • [36] TRAVELING WAVES ALONG THE FRONT OF A PULSATING FLAME
    MATKOWSKY, BJ
    OLAGUNJU, DO
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (03) : 486 - 501
  • [37] Existence of traveling front solutions of the nerve equation
    Hattori, Y
    TOHOKU MATHEMATICAL PUBLICATIONS, NO 8: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ASYMPTOTICS IN NONLINEAR DIFFUSIVE SYSTEMS, 1998, : 211 - 216
  • [38] Traveling-wave convection in colloids stratified by gravity
    Smorodin, B. L.
    Cherepanov, I. N.
    Myznikova, B. I.
    Shliomis, M. I.
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [39] Regularity of traveling periodic stratified water waves with vorticity
    Wang, Ling-Jun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 81 : 247 - 263
  • [40] Stratified β$\beta$-numbers and traveling salesman in Carnot groups
    Li, Sean
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (02): : 662 - 703