BIFURCATION OF A UNIQUE STABLE PERIODIC ORBIT FROM A HOMOCLINIC ORBIT IN INFINITE-DIMENSIONAL SYSTEMS

被引:9
|
作者
CHOW, SN [1 ]
DENG, B [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48824
关键词
D O I
10.2307/2001001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:539 / 587
页数:49
相关论文
共 50 条
  • [1] NONSTATIONARY HOMOCLINIC ORBIT FOR AN INFINITE-DIMENSIONAL FRACTIONAL REACTION-DIFFUSION SYSTEM
    Chen, Peng
    Mei, Linfeng
    Tang, Xianhua
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (10): : 5389 - 5409
  • [2] HOMOCLINIC STRUCTURES IN INFINITE-DIMENSIONAL SYSTEMS
    LERMAN, LM
    SHILNIKOV, LP
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1988, 29 (03) : 408 - 417
  • [3] Bifurcation Complexity from Orbit-Flip Homoclinic Orbit of Weak Type
    Lu, Qiuying
    Naudot, Vincent
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [4] Bifurcation from a periodic orbit in perturbed planar Hamiltonian systems
    Henrard, M
    Zanolin, F
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) : 79 - 103
  • [5] Bifurcation from single periodic orbit in discontinuous autonomous systems
    Feckan, Michal
    Pospisil, Michal
    [J]. APPLICABLE ANALYSIS, 2013, 92 (06) : 1085 - 1100
  • [6] Codimension 3 bifurcation from orbit-flip homoclinic orbit of weak type
    Lu, Qiuying
    Deng, Guifeng
    Luo, Hua
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (71)
  • [7] Bifurcation of Nongeneric Homoclinic Orbit Accompanied by Pitchfork Bifurcation
    Geng, Fengjie
    Li, Song
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] The contour of an orbit and a stable periodic orbit
    Kretser, NY
    Agekyan, TA
    [J]. ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2003, 29 (07): : 494 - 494
  • [9] The contour of an orbit and a stable periodic orbit
    N. Yu. Kretser
    T. A. Agekyan
    [J]. Astronomy Letters, 2003, 29 : 494 - 494
  • [10] Different Types of Stable Periodic Points of Diffeomorphism of a Plane with a Homoclinic Orbit
    E. V. Vasil’eva
    [J]. Vestnik St. Petersburg University, Mathematics, 2021, 54 : 180 - 186