Bifurcation Complexity from Orbit-Flip Homoclinic Orbit of Weak Type

被引:1
|
作者
Lu, Qiuying [1 ]
Naudot, Vincent [2 ]
机构
[1] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Florida Atlantic Univ, Dept Math Sci, 777 Glades Rd, Boca Raton, FL 33431 USA
来源
关键词
Orbit-flip; weak type; inclination-flip; local moving coordinates; codimension; HYPERBOLIC VECTOR-FIELDS; NERVE AXON EQUATIONS; INCLINATION-FLIP; STRANGE ATTRACTOR; LINEARIZATION; GERMS; FLOWS;
D O I
10.1142/S0218127416500590
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the unfolding of a three-dimensional vector field having an orbit-flip homoclinic orbit of weak type. Such a homoclinic orbit is a degenerate version of the so-called orbit-flip homoclinic orbit. We show the existence of inclination-flip homoclinic orbits of arbitrary higher order bifurcating from the unperturbed system. Our strategy consists of using the local moving coordinates method and blow up in the parameter space. In addition, the numerical existence of the orbit-flip homoclinic orbit of weak type is presented based on the truncated Taylor expansion and the numerical computation for both the strong stable manifold and unstable manifold.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Codimension 3 bifurcation from orbit-flip homoclinic orbit of weak type
    Lu, Qiuying
    Deng, Guifeng
    Luo, Hua
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2015, (71)
  • [2] Weak type heterodimensional cycle bifurcation with orbit-flip
    LU QiuYing1
    2Department of Mathematics
    3School of Information Engineering
    [J]. Science China Mathematics, 2011, 54 (06) : 1175 - 1196
  • [3] Weak type heterodimensional cycle bifurcation with orbit-flip
    QiuYing Lu
    DeMing Zhu
    FengJie Geng
    [J]. Science China Mathematics, 2011, 54 : 1175 - 1196
  • [4] Weak type heterodimensional cycle bifurcation with orbit-flip
    Lu QiuYing
    Zhu DeMing
    Geng FengJie
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1175 - 1196
  • [5] A strange attractor in the unfolding of an orbit-flip homoclinic orbit
    Naudot, V
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2002, 17 (01): : 45 - 63
  • [6] HETERODIMENSIONAL CYCLE BIFURCATION WITH ORBIT-FLIP
    Lu, Qiuying
    Qiao, Zhiqin
    Zhang, Tiansi
    Zhu, Deming
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02): : 491 - 508
  • [7] Inclination-flip homoclinic orbits arising from orbit-flip
    Morales, CA
    Pacifico, MJ
    [J]. NONLINEARITY, 2001, 14 (02) : 379 - 393
  • [8] ATTRACTORS AND ORBIT-FLIP HOMOCLINIC ORBITS FOR STAR FLOWS
    Morales, C. A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (08) : 2783 - 2791
  • [9] CHAOS FROM ORBIT-FLIP HOMOCLINIC ORBITS GENERATED IN A PRACTICAL CIRCUIT
    TANAKA, HA
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (08) : 1339 - 1342
  • [10] Multiple homoclinic bifurcations from orbit-flip .1. Successive homoclinic doublings
    Kokubu, H
    Komuro, M
    Oka, H
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (05): : 833 - 850