FRENKEL EXCITONS IN RANDOM-SYSTEMS WITH CORRELATED GAUSSIAN DISORDER

被引:14
|
作者
DOMINGUEZADAME, F
机构
[1] Departamento de Física de Materiales, Facultad de Físicas, Universidad Complutense
来源
PHYSICAL REVIEW B | 1995年 / 51卷 / 18期
关键词
D O I
10.1103/PhysRevB.51.12801
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical-absorption spectra of Frenkel excitons in random one-dimensional systems are presented. Two models of inhomogeneous broadening, arising from a Gaussian distribution of on-site energies, are considered. In one case the on-site energies are uncorrelated variables whereas in the second model the on-site energies are pairwise correlated (dimers). We observe a red shift and a broadening of the absorption line on increasing the width of the Gaussian distribution. In the two cases we find that the shift is the same, within our numerical accuracy, whereas the broadening is larger when dimers are introduced. The increase of the width of the Gaussian distribution leads to larger differences between uncorrelated and correlated disordered models. We suggest that this higher broadening is due to stronger scattering effects from dimers. © 1995 The American Physical Society.
引用
收藏
页码:12801 / 12804
页数:4
相关论文
共 50 条
  • [41] RESPONSE CELL PROBABILITIES FOR NONLINEAR RANDOM-SYSTEMS
    SOONG, TT
    CHUNG, LL
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (01): : 230 - 232
  • [42] EXTENT OF ANOMALOUS DISPERSION IN SPATIALLY RANDOM-SYSTEMS
    SCHER, H
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 231 - 231
  • [43] ON NONNEGATIVE SOLUTIONS OF RANDOM-SYSTEMS OF LINEAR INEQUALITIES
    BUCHTA, C
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) : 85 - 95
  • [44] STOCHASTIC QUANTIZATION AND KILLING SYMMETRIES OF RANDOM-SYSTEMS
    ETIM, E
    SCHULKE, L
    [J]. PHYSICS LETTERS B, 1987, 187 (1-2) : 141 - 145
  • [45] ANOMALOUS DYNAMICS OF INTERACTING PARTICLES IN RANDOM-SYSTEMS
    OHTSUKI, T
    KEYES, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (03): : L171 - L174
  • [46] RENORMALIZATION THEORY AND CHAOS EXPONENTS IN RANDOM-SYSTEMS
    NEYNIFLE, M
    HILHORST, HJ
    [J]. PHYSICA A, 1993, 194 (1-4): : 462 - 470
  • [47] FRENKEL AND WANNIER EXCITONS IN TWO-DIMENSIONAL SYSTEMS
    LEE, MH
    BAGCHI, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 303 - 303
  • [48] THERMODYNAMIC LIMIT IN A STRONGER SENSE FOR RANDOM-SYSTEMS
    MORITA, T
    [J]. PHYSICA A, 1979, 99 (1-2): : 184 - 192
  • [49] CONDUCTANCE OF ONE-DIMENSIONAL RANDOM-SYSTEMS
    AZBEL, MY
    HARTSTEIN, A
    DIVINCENZO, D
    [J]. PHYSICA B & C, 1984, 127 (1-3): : 252 - 256
  • [50] DISTRIBUTION FUNCTION OF THE INTENSITY OF OPTICAL WAVES IN RANDOM-SYSTEMS
    KOGAN, E
    BAUMGARTNER, R
    BERKOVITS, R
    KAVEH, M
    [J]. PHYSICA A, 1993, 200 (1-4): : 469 - 475