NITROSYL-NITRITE INTERCONVERSION IN PENTACYANORUTHENATE(II) COMPLEXES

被引:24
|
作者
CHEVALIER, AA
GENTIL, LA
OLABE, JA
机构
[1] UNIV NACL MAR DEL PLATA,FAC INGN,DEPT INGN QUIM,RA-7600 MAR DEL PLATA,ARGENTINA
[2] UNIV BUENOS AIRES,FAC CIENCIAS EXACTAS & NAT,DEPT QUIM INORGAN ANAL & QUIM FIS,RA-1428 BUENOS AIRES,ARGENTINA
关键词
D O I
10.1039/dt9910001959
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The nucleophilic addition of OH- to [Ru(CN)5(NO)]2- leads to the N-bonded pentacyanonitroruthenate(II) ion (lambda-max = 320 nm, epsilon = 3850 dm3 mol-1 cm-1). The stoichiometry is 2:1 ([OH-]:[Ru]) and the equilibrium formation constant is 4.4 x 10(6) dm6 mol-2 (25-degrees-C, I = 1 mol dm-3). A kinetic study of the forward reaction showed that it is first order in the concentration of each reactant, with k = 0.95 dm3 mol-1 s-1 (25-degrees-C, I = 1 mol dm-3), DELTA-H double-ended dagger = 57.3 +/- 3.3 kJ mol-1 and DELTA-S double-ended dagger = -54.0 +/- 4.5 J K-1 mol-1. The mechanism involves two consecutive attacks by OH-, the first being rate determining. The reaction product decays by an aquation process, leading to [Ru(CN)5(H2O)]3- and free NO2-. The rate constant for the dissociation reaction of [Ru(CN)5(NO2)]4- is k-N = 2.00 x 10(-4) s-1 (25-degrees-C, I = 1 mol dm-3). In the formation reaction, both nitrite (O-bound) and nitro (N-bound) linkage isomers are formed, with k(o) and k(N) being 0.23 and 0.15 dm3 mol-1 s-1 respectively (25-degrees-C, I = 1 mol dm-3). The O-bound isomer isomerizes slowly to the thermodynamically more stable N-bound isomer. The kinetic and thermodynamic parameters have been analysed by comparison with the chemistry of the complexes [Fe(CN)5(NO)]2- and [Fe(CN)5(NO2)]4-.
引用
下载
收藏
页码:1959 / 1963
页数:5
相关论文
共 50 条
  • [41] Self-assembly and interconversion of tetranuclear copper(II) complexes
    Isele, K
    Franz, P
    Ambrus, C
    Bernardinelli, G
    Decurtins, S
    Williams, AF
    INORGANIC CHEMISTRY, 2005, 44 (11) : 3896 - 3906
  • [42] NOVEL COPPER NITROSYL COMPLEXES - CONTRIBUTIONS TO THE UNDERSTANDING OF DISSIMILATORY, COPPER-CONTAINING NITRITE REDUCTASES
    AVERILL, BA
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1994, 33 (20): : 2057 - 2058
  • [43] Intervalence absorption, ligand interchange, and redox reactivity in binuclear cyanopyridine-bridged complexes containing pentacyanoruthenate(II) and pentaammineruthenium(II) or -(III)
    Almaraz, AE
    Gentil, LA
    Baraldo, LM
    Olabe, JA
    INORGANIC CHEMISTRY, 1997, 36 (07) : 1517 - 1519
  • [44] SYNTHESIS AND INTERCONVERSION OF , AND RESTRICTED ROTATION IN, PHENYL COMPLEXES OF RUTHENIUM(II)
    PROBITTS, EJ
    SAUNDERS, DR
    STONE, MH
    MAWBY, RJ
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1986, (06): : 1167 - 1173
  • [45] NITROSYL COMPLEXES AND SOME REACTIONS OF NITROSYL LIGAND
    GRUNDRY, KR
    LAING, KR
    REED, CA
    ROPER, WR
    CHEMISTRY IN NEW ZEALAND, 1970, 34 (04): : 136 - &
  • [46] The first unambiguous determination of a nitrosyl-to-nitrite conversion in an iron nitrosyl porphyrin
    Cheng, L
    Powell, DR
    Khan, MA
    Richter-Addo, GB
    CHEMICAL COMMUNICATIONS, 2000, (23) : 2301 - 2302
  • [47] SYNTHETIC ANALOGS OF NITRITE ADDUCTS OF COPPER PROTEINS - CHARACTERIZATION AND INTERCONVERSION OF DICOPPER(I,I) AND -(I,II) COMPLEXES BRIDGED ONLY BY NO2-
    HALFEN, JA
    MAHAPATRA, S
    OLMSTEAD, MM
    TOLMAN, WB
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (05) : 2173 - 2174
  • [48] Mechanistic study of iron (III) porphyrin nitrite oxidation and their iron (II) nitrosyl redox reactions
    Meleney, Casey B.
    O'Shea, Stephen K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [49] Reaction of platinum (II) and palladium (II) nitrite complexes with potassium bromide
    M. I. Gel’fman
    N. A. Starkina
    O. V. Salishcheva
    Russian Journal of Inorganic Chemistry, 2007, 52 : 1557 - 1560
  • [50] Bonding modes of nitrite and nitrate in palladium(II) and platinum(II) complexes
    Tae Hwan Noh
    Sung Min Kim
    Kyung Hwan Park
    Ok-Sang Jung
    Transition Metal Chemistry, 2012, 37 : 535 - 540