COUPLED MAPS ON FRACTAL LATTICES

被引:56
|
作者
COSENZA, MG
KAPRAL, R
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 04期
关键词
D O I
10.1103/PhysRevA.46.1850
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A fractal array of coupled maps, where space is nonuniform, is considered as a dynamical system. The stability and bifurcations of spatially synchronized, periodic states on the Sierpinski gasket axe studied. The matrix that expresses the coupling among neighboring elements exhibits a spectrum of eigenvalues with multifractal properties, and their global scaling behavior is characterized by the function f(alpha). The multifractal character of the eigenvalues affects the stability boundaries of the synchronized, periodic state-s in the parameter plane of the system. The boundary structure allows access to regions of stability and gives rise to bifurcations that are not present in regular lattices.
引用
收藏
页码:1850 / 1858
页数:9
相关论文
共 50 条
  • [21] Coupled symplectic maps as models for subdiffusive processes in disordered Hamiltonian lattices
    Antonopoulos, Chris G.
    Bountis, Tassos
    Drossos, Lambros
    [J]. APPLIED NUMERICAL MATHEMATICS, 2016, 104 : 110 - 119
  • [22] On fractal and quasi-fractal lattices
    Ján Jakubík
    Judita Lihová
    [J]. Acta Scientiarum Mathematicarum, 2010, 76 (3-4): : 353 - 358
  • [23] Phase synchronization of two-dimensional lattices of coupled chaotic maps
    Hu, Bambi
    Liu, Zonghua
    [J]. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 2114 - 2118
  • [24] Analysis of spatiotemporally periodic behavior in lattices of coupled piecewise monotonic maps
    Chatterjee, N
    Gupte, N
    [J]. PHYSICAL REVIEW E, 2001, 63 (01):
  • [25] PERCOLATION ON FRACTAL LATTICES
    HAVLIN, S
    BENAVRAHAM, D
    MOVSHOVITZ, D
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (26) : 2347 - 2350
  • [26] FRACTAL LATTICES AND UNIVERSALITY
    KOHRING, G
    [J]. PHYSICAL REVIEW B, 1986, 33 (01): : 610 - 613
  • [27] Phase transitions in lattices of coupled chaotic maps and their dependence on the local Lyapunov exponent
    Sastre, F
    Perez, G
    [J]. PHYSICAL REVIEW E, 1998, 57 (05): : 5213 - 5216
  • [28] Universality in Ising-like phase transitions of lattices of coupled chaotic maps
    Marcq, P
    Chate, H
    Manneville, P
    [J]. PHYSICAL REVIEW E, 1997, 55 (03): : 2606 - 2627
  • [29] Chaotic synchronization in lattices of two-variable maps coupled with one variable
    Lin, Wen-Wei
    Peng, Chen-Chang
    Wang, Yi-Qian
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (06) : 827 - 850
  • [30] DIFFUSION ON FRACTAL LATTICES AND THE FRACTAL EINSTEIN RELATION
    GIVEN, JA
    MANDELBROT, BB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (15): : L565 - L569