A MEASURE OF SKEWNESS AND KURTOSIS AND A GRAPHICAL-METHOD FOR ASSESSING MULTIVARIATE NORMALITY

被引:77
|
作者
SRIVASTAVA, MS
机构
关键词
D O I
10.1016/0167-7152(84)90062-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:263 / 267
页数:5
相关论文
共 50 条
  • [41] A graphical tool for assessing normality
    Hazelton, ML
    AMERICAN STATISTICIAN, 2003, 57 (04): : 285 - 288
  • [42] AN EFFICIENT GRAPHICAL-METHOD FOR CAD
    FABRIKANT, VL
    SANKAR, TS
    COMPUTER-AIDED DESIGN, 1985, 17 (08) : 369 - 372
  • [43] A NEW GRAPHICAL-METHOD FOR DETECTING SINGLE AND MULTIPLE OUTLIERS IN UNIVARIATE AND MULTIVARIATE DATA
    BACONSHONE, J
    FUNG, WK
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1987, 36 (02): : 153 - 162
  • [44] A new graphical test for multivariate normality
    Romeu, JL
    Ozturk, A
    AMERICAN JOURNAL OF MATHEMATICAL AND MANAGEMENT SCIENCES, VOL 16, NOS 1 AND 2: MSI-2000: MULTIVARIATE STATISTICAL ANALYSIS IN HONOR OF PROFESSOR MINORU SIOTANI ON HIS 70TH BIRTHDAY, VOLUME II OF PROCEEDINGS OF THE MULTIVARIATE STATISTICAL INFERENCE 2000 CONFERENCE, 1996, 16 (1-2): : 5 - 48
  • [45] Recurrence formula on the joint distribution of sample skewness and kurtosis under normality
    Nakagawa, Shigekazu
    Hashiguchi, Hiroki
    Niki, Naoto
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (04) : 1148 - 1155
  • [46] GRAPHICAL-METHOD OF HUCKEL MATRIX
    ZHANG, Q
    LIN, L
    SCIENTIA SINICA, 1979, 22 (10): : 1169 - 1184
  • [47] GRAPHICAL-METHOD IN KINETICS OF POLYMERIZATION
    YAN, DY
    LI, GY
    JIANG, YS
    SCIENTIA SINICA, 1981, 24 (01): : 46 - 60
  • [48] A MEASURE AND A GRAPHICAL-METHOD FOR EVALUATING SLOPE ROTATABILITY IN RESPONSE-SURFACE DESIGNS
    JANG, DH
    PARK, SH
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (07) : 1849 - 1863
  • [49] THE MEASURE OF DIFFUSION SKEWNESS AND KURTOSIS IN MAGNETIC RESONANCE IMAGING
    Zhang, Xinzhen
    Ling, Chen
    Qi, Liqun
    Wu, Ed Xuekui
    PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (02): : 391 - 404
  • [50] Kurtosis tests for multivariate normality with monotone incomplete data
    Yamada, Tomoya
    Romer, Megan M.
    Richards, Donald St. P.
    TEST, 2015, 24 (03) : 532 - 557