ON THE ASYMPTOTICS OF CONSTRAINED M-ESTIMATION

被引:189
|
作者
GEYER, CJ [1 ]
机构
[1] UNIV CHICAGO,CHICAGO,IL 60637
来源
ANNALS OF STATISTICS | 1994年 / 22卷 / 04期
关键词
CENTRAL LIMIT THEOREM; MAXIMUM LIKELIHOOD; M-ESTIMATION; CONSTRAINT; TANGENT CONE; CHERNOFF REGULARITY; CLARKE REGULARITY;
D O I
10.1214/aos/1176325768
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Limit theorems for an M-estimate constrained to lie in a closed subset of R(d), given under two different sets of regularity conditions. A consistent sequence of global optimizers converges under Chernoff regularity of the parameter set. A root n-consistent sequence of local optimizers converges under Clarke regularity of the parameter set. In either case the asymptotic distribution is a projection of a normal random vector on the tangent cone of the parameter set at the true parameter value. Limit theorems for the optimal value are also obtained, agreeing with Chernoff's result in the case of maximum likelihood with global optimizers.
引用
收藏
页码:1993 / 2010
页数:18
相关论文
共 50 条