Contraction and Robustness of Continuous Time Primal-Dual Dynamics

被引:16
|
作者
Nguyen, Hung D. [1 ]
Vu, Thanh Long [2 ]
Turitsyn, Konstantin [2 ]
Slotine, Jean-Jacques [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2018年 / 2卷 / 04期
关键词
Primal-dual dynamics; continuous optimization; strict contraction; robustness; hierarchical architecture;
D O I
10.1109/LCSYS.2018.2847408
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Primal-dual (PD) algorithm is widely used in convex optimization to determine saddle points. While the stability of the PD algorithm can be easily guaranteed, strict contraction is nontrivial to establish in most cases. This letter focuses on continuous, possibly non-autonomous PD dynamics arising in a network context, in distributed optimization, or in systems with multiple time-scales. We show that the PD algorithm is indeed strictly contracting in specific metrics and analyze its robustness establishing stability and performance guarantees for different approximate PD systems. We derive estimates for the performance of multiple time-scale multi-layer optimization systems, and illustrate our results on a PD representation of the Automatic Generation Control of power systems.
引用
收藏
页码:755 / 760
页数:6
相关论文
共 50 条
  • [1] A Contraction Analysis of Primal-Dual Dynamics in Distributed and Time-Varying Implementations
    Cisneros-Velarde, Pedro
    Jafarpour, Saber
    Bullo, Francesco
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) : 3560 - 3566
  • [2] Primal, dual and primal-dual partitions in continuous linear optimization
    Goberna, M. A.
    Todorov, M. I.
    [J]. OPTIMIZATION, 2007, 56 (5-6) : 617 - 628
  • [3] Primal-dual stability in continuous linear optimization
    Miguel A. Goberna
    Maxim I. Todorov
    [J]. Mathematical Programming, 2009, 116 : 129 - 146
  • [4] Primal-dual stability in continuous linear optimization
    Goberna, Miguel A.
    Todorov, Maxim I.
    [J]. MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) : 129 - 146
  • [5] Continuous Primal-Dual Methods for Image Processing
    Goldman, M.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (01): : 366 - 385
  • [6] Continuous-Time Receding-Horizon Estimation via Primal-Dual Dynamics and Stability Analysis
    Sato, Kaito
    Sawada, Kenji
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 10823 - 10830
  • [7] Incrementally Passive Primal-Dual Dynamics for Real-Time Optimization
    Adegbege, Ambrose A.
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1767 - 1772
  • [8] Asymptotic convergence of constrained primal-dual dynamics
    Cherukuri, Ashish
    Mallada, Enrique
    Cortes, Jorge
    [J]. SYSTEMS & CONTROL LETTERS, 2016, 87 : 10 - 15
  • [9] On the Exponential Stability of Primal-Dual Gradient Dynamics
    Qu, Guannan
    Li, Na
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (01): : 43 - 48
  • [10] Combinatorial optimization using the Lagrange primal-dual dynamics of
    Vadlamani, Sri Krishna
    Xiao, Tianyao Patrick
    Yablonovitch, Eli
    [J]. PHYSICAL REVIEW APPLIED, 2024, 21 (04):