Primal-dual stability in continuous linear optimization

被引:9
|
作者
Goberna, Miguel A. [1 ]
Todorov, Maxim I. [2 ]
机构
[1] Univ Alicante, Dept Stat & Operat Res, E-03080 Alicante, Spain
[2] Univ Americas Puebla, Dept Actuary Phys & Math, Cholula 72820, Mexico
关键词
linear programming; linear semi-infinite programming; stability; INEQUALITY SYSTEMS; MODEL-REDUCTION; SEMIINFINITE; CONVERGENCE; UNIQUENESS; DISTANCE; SET;
D O I
10.1007/s10107-007-0128-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Any linear (ordinary or semi-infinite) optimization problem, and also its dual problem, can be classified as either inconsistent or bounded or unbounded, giving rise to nine duality states, three of them being precluded by the weak duality theorem. The remaining six duality states are possible in linear semi-infinite programming whereas two of them are precluded in linear programming as a consequence of the existence theorem and the non-homogeneous Farkas Lemma. This paper characterizes the linear programs and the continuous linear semi-infinite programs whose duality state is preserved by sufficiently small perturbations of all the data. Moreover, it shows that almost all linear programs satisfy this stability property.
引用
收藏
页码:129 / 146
页数:18
相关论文
共 50 条
  • [1] Primal-dual stability in continuous linear optimization
    Miguel A. Goberna
    Maxim I. Todorov
    [J]. Mathematical Programming, 2009, 116 : 129 - 146
  • [2] Primal, dual and primal-dual partitions in continuous linear optimization
    Goberna, M. A.
    Todorov, M. I.
    [J]. OPTIMIZATION, 2007, 56 (5-6) : 617 - 628
  • [3] A note on primal-dual stability in infinite linear programming
    Goberna, Miguel A.
    Lopez, Marco A.
    Ridolfi, Andrea B.
    Vera de Serio, Virginia N.
    [J]. OPTIMIZATION LETTERS, 2020, 14 (08) : 2247 - 2263
  • [4] A note on primal-dual stability in infinite linear programming
    Miguel A. Goberna
    Marco A. López
    Andrea B. Ridolfi
    Virginia N. Vera de Serio
    [J]. Optimization Letters, 2020, 14 : 2247 - 2263
  • [5] Primal-Dual Optimization for Fluids
    Inglis, T.
    Eckert, M. -L.
    Gregson, J.
    Thuerey, N.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (08) : 354 - 368
  • [6] On the primal-dual geometry of level sets in linear and conic optimization
    Freund, RM
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (04) : 1004 - 1013
  • [7] Linear convergence of a primal-dual algorithm for distributed interval optimization
    Wang, Yinghui
    Wang, Jiuwei
    Song, Xiaobo
    Hu, Yanpeng
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 857 - 873
  • [8] Quantized Primal-Dual Algorithms for Network Optimization With Linear Convergence
    Chen, Ziqin
    Liang, Shu
    Li, Li
    Cheng, Shuming
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 471 - 478
  • [9] Solvability and Primal-dual Partitions of the Space of Continuous Linear Semi-infinite Optimization Problems
    Barragan, Abraham
    Hernandez, Lidia
    Todorov, Maxim
    [J]. COMPUTACION Y SISTEMAS, 2018, 22 (02): : 315 - 329
  • [10] Stability of primal-dual gradient dynamics and applications to network optimization
    Feijer, Diego
    Paganini, Fernando
    [J]. AUTOMATICA, 2010, 46 (12) : 1974 - 1981