Quantized Primal-Dual Algorithms for Network Optimization With Linear Convergence

被引:0
|
作者
Chen, Ziqin [1 ]
Liang, Shu [1 ]
Li, Li [1 ]
Cheng, Shuming [1 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 201210, Peoples R China
关键词
Convergence; Quantization (signal); Bandwidth; Artificial neural networks; Estimation; Convex functions; Prediction algorithms; Distributed convex optimization; linear convergence rate; primal-dual algorithm; quantized communication; CONSENSUS;
D O I
10.1109/TAC.2023.3266018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note investigates a network optimization problem in which a group of agents cooperate to minimize a global function under the practical constraint of finite-bandwidth communication. We propose an adaptive encoding-decoding scheme to handle the quantization communication between agents. Based on this scheme, we develop a continuous-time quantized distributed primal-dual algorithm for the network optimization problem. Our algorithm achieves linear convergence to an exact optimal solution. Furthermore, we obtain the relationship between the communication bandwidth and the convergence rate. Finally, we use a distributed logistic regression problem to illustrate the effectiveness of our methods.
引用
收藏
页码:471 / 478
页数:8
相关论文
共 50 条
  • [1] Convergence Analysis of Quantized Primal-Dual Algorithms in Network Utility Maximization Problems
    Nekouei, Ehsan
    Alpcan, Tansu
    Nair, Girish N.
    Evans, Robin J.
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 284 - 297
  • [2] Linear convergence of a primal-dual algorithm for distributed interval optimization
    Wang, Yinghui
    Wang, Jiuwei
    Song, Xiaobo
    Hu, Yanpeng
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 857 - 873
  • [3] Primal-dual damping algorithms for optimization
    Zuo, Xinzhe
    Osher, Stanley
    Li, Wuchen
    [J]. ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2024, 9 (02) : 467 - 504
  • [4] Exponential Convergence of Primal-Dual Dynamical System for Linear Constrained Optimization
    Luyao Guo
    Xinli Shi
    Jinde Cao
    [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9 (04) : 745 - 748
  • [5] Linear convergence of primal-dual gradient methods and their performance in distributed optimization
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    [J]. AUTOMATICA, 2020, 117
  • [6] Exponential Convergence of Primal-Dual Dynamical System for Linear Constrained Optimization
    Guo, Luyao
    Shi, Xinli
    Cao, Jinde
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (04) : 745 - 748
  • [7] Primal, dual and primal-dual partitions in continuous linear optimization
    Goberna, M. A.
    Todorov, M. I.
    [J]. OPTIMIZATION, 2007, 56 (5-6) : 617 - 628
  • [8] Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Chai, Tianyou
    Johansson, Karl H.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) : 4194 - 4201
  • [9] Convergence Analysis of Quantized Primal-dual Algorithm in Quadratic Network Utility Maximization Problems
    Nekouei, Ehsan
    Nair, Girish
    Alpcan, Tansu
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 2655 - 2660
  • [10] ON THE SUPERLINEAR AND QUADRATIC CONVERGENCE OF PRIMAL-DUAL INTERIOR POINT LINEAR PROGRAMMING ALGORITHMS
    Zhang, Yin
    Tapia, Richard A.
    Dennis, John E., Jr.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (02) : 304 - 324