Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization

被引:15
|
作者
Yi, Xinlei [1 ,2 ]
Zhang, Shengjun [3 ]
Yang, Tao [4 ]
Chai, Tianyou [4 ]
Johansson, Karl H. [1 ,2 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, S-11428 Stockholm, Sweden
[2] Digital Futures, S-11428 Stockholm, Sweden
[3] Univ North Texas, Dept Elect Engn, Denton, TX 76203 USA
[4] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
Convergence; Cost function; Convex functions; Costs; Technological innovation; Lyapunov methods; Laplace equations; Distributed nonconvex optimization; first-order algorithm; linear convergence; primal-dual algorithm; zeroth-order algorithm; CONVEX-OPTIMIZATION; MULTIAGENT OPTIMIZATION; CONSENSUS; ADMM;
D O I
10.1109/TAC.2021.3108501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers the distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of local cost functions by using local information exchange. We first consider a distributed first-order primal-dual algorithm. We show that it converges sublinearly to a stationary point if each local cost function is smooth and linearly to a global optimum under an additional condition that the global cost function satisfies the Polyak-Lojasiewicz condition. This condition is weaker than strong convexity, which is a standard condition for proving linear convergence of distributed optimization algorithms, and the global minimizer is not necessarily unique. Motivated by the situations where the gradients are unavailable, we then propose a distributed zeroth-order algorithm, derived from the considered first-order algorithm by using a deterministic gradient estimator, and show that it has the same convergence properties as the considered first-order algorithm under the same conditions. The theoretical results are illustrated by numerical simulations.
引用
收藏
页码:4194 / 4201
页数:8
相关论文
共 50 条
  • [1] Zeroth-order algorithms for stochastic distributed nonconvex optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Johansson, Karl H.
    [J]. AUTOMATICA, 2022, 142
  • [2] STOCHASTIC FIRST- AND ZEROTH-ORDER METHODS FOR NONCONVEX STOCHASTIC PROGRAMMING
    Ghadimi, Saeed
    Lan, Guanghui
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2341 - 2368
  • [3] Quantized Primal-Dual Algorithms for Network Optimization With Linear Convergence
    Chen, Ziqin
    Liang, Shu
    Li, Li
    Cheng, Shuming
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 471 - 478
  • [4] Linear convergence of a primal-dual algorithm for distributed interval optimization
    Wang, Yinghui
    Wang, Jiuwei
    Song, Xiaobo
    Hu, Yanpeng
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 857 - 873
  • [5] ON THE LINEAR CONVERGENCE OF THE GENERAL FIRST ORDER PRIMAL-DUAL ALGORITHM
    Wang, Kai
    Han, Deren
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, : 3749 - 3770
  • [6] A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization
    Yi, Xinlei
    Zhang, Shengjun
    Yang, Tao
    Chai, Tianyou
    Johansson, Karl Henrik
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (05) : 812 - 833
  • [7] A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization
    Xinlei Yi
    Shengjun Zhang
    Tao Yang
    Tianyou Chai
    Karl Henrik Johansson
    [J]. IEEE/CAA Journal of Automatica Sinica, 2022, (05) : 812 - 833
  • [8] A General Framework of Exact Primal-Dual First-Order Algorithms for Distributed Optimization
    Mansoori, Fatemeh
    Wei, Ermin
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6386 - 6391
  • [9] FlexPD: A Flexible Framework of First-Order Primal-Dual Algorithms for Distributed Optimization
    Mansoori, Fatemeh
    Wei, Ermin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3500 - 3512
  • [10] Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order Coordinate Method
    Zhang, Shengjun
    Dong, Yunlong
    Xie, Dong
    Yao, Lisha
    Bailey, Colleen P.
    Fu, Shengli
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1180 - 1185