THERMAL-EQUILIBRIUM IN A ONE-DIMENSIONAL SYSTEM WITH CONTINUOUS FEEDBACK

被引:0
|
作者
BRYKALOV, SA
机构
[1] Russian Acad of Sciences, Russia
关键词
THERMAL EQUILIBRIUM; CONTINUOUS FEEDBACK; TEMPERATURE DISTRIBUTIONS; OPTIMAL CONTROL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The presence of one-dimensional steady temperature distributions in a system with feedback is investigated. It is assumed that the feedback is defined by a fixed continuous mapping. Radially symmetric temperature distributions in a system for controlling the heating of a thin circular plate with a concentric cut are considered. The problem reduces to the solvability of a boundary-value problem for a functional-differential equation with ordinary derivatives.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [21] Continuous orbit transitions in a one-dimensional inelastic particle system
    Yang, Rong
    Wylie, Jonathan J.
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) : 593 - 595
  • [22] Deviation from local equilibrium distribution in one-dimensional lattice thermal conduction
    Takesue, Shinji
    Ueda, Akira
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (162): : 220 - 227
  • [23] Feedback stabilisation of a one-dimensional nonlinear pool-boiling system
    van Gils, R. W.
    Speetjens, M. F. M.
    Nijmeijer, H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (11-12) : 2393 - 2403
  • [24] THERMAL-EQUILIBRIUM BETWEEN ISOXAZOLIDINE AND ENAMINE
    REAMER, RA
    SLETZINGER, M
    SHINKAI, I
    TETRAHEDRON LETTERS, 1980, 21 (36) : 3447 - 3450
  • [25] THERMAL-EQUILIBRIUM STATES OF THE QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTORS IN ONE-DIMENSION
    BREZZI, F
    GASSER, I
    MARKOWICH, PA
    SCHMEISER, C
    APPLIED MATHEMATICS LETTERS, 1995, 8 (01) : 47 - 52
  • [26] FLUCTUATIONS IN FLUIDS OUT OF THERMAL-EQUILIBRIUM
    LAW, BM
    SENGERS, JV
    JOURNAL OF STATISTICAL PHYSICS, 1989, 57 (3-4) : 531 - 547
  • [27] ARE SOLAR CORONAL LOOPS IN THERMAL-EQUILIBRIUM
    HOOD, AW
    PRIEST, ER
    ASTRONOMY & ASTROPHYSICS, 1980, 87 (1-2): : 126 - 131
  • [28] THERMAL-EQUILIBRIUM PROPERTIES OF THE ELECTRON FLUID
    HERNANDEZ, JP
    CHACON, E
    NAVASCUES, G
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 156 : 455 - 458
  • [29] THERMAL-EQUILIBRIUM IN MINKOWSKI STOCHASTIC QUANTIZATION
    NAKAZATO, H
    PROGRESS OF THEORETICAL PHYSICS, 1987, 77 (01): : 20 - 25
  • [30] Momentum conserving one-dimensional system with a finite thermal conductivity
    Lee-Dadswell, G. R.
    Turner, E.
    Ettinger, J.
    Moy, M.
    PHYSICAL REVIEW E, 2010, 82 (06):