LONG-TIME RELAXATION OF POLYMER NETWORKS

被引:24
|
作者
HEINRICH, G [1 ]
VILGIS, TA [1 ]
机构
[1] MAX PLANCK INST POLYMER RES,W-6500 MAINZ,GERMANY
关键词
D O I
10.1021/ma00027a062
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A naive single-chain approximation of the topological constraint release of polymer network strands over the whole time region is discussed. In the long-time limit, the net relaxation of the whole network is predicted to follow the empirical Thirion-Chasset relation. A linear cross-link dependence of the characteristic relaxation time has been found. Further, some common features to random hopping models in disordered materials could be examined.
引用
收藏
页码:404 / 407
页数:4
相关论文
共 50 条
  • [21] A long-time limit for world subway networks
    Roth, Camille
    Kang, Soong Moon
    Batty, Michael
    Barthelemy, Marc
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (75) : 2540 - 2550
  • [22] Long-time scale spectral diffusion in polymer glass
    Müller, J.
    Maier, H.
    Hannig, G.
    Khodykin, O.V.
    Haarer, D.
    Kharlamov, B.M.
    2000, American Inst of Physics, Woodbury, NY, United States (113):
  • [23] Long-time scale spectral diffusion in polymer glass
    Müller, J
    Maier, H
    Hannig, G
    Khodykin, OV
    Haarer, D
    Kharlamov, BM
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (02): : 876 - 882
  • [24] ENERGY CRITERIA OF THE LONG-TIME STRENGTH OF POLYMER MATERIALS
    ZEZIN, YP
    BART, YY
    TUNDA, MA
    MECHANICS OF COMPOSITE MATERIALS, 1987, 23 (04) : 519 - 522
  • [25] Energy criteria of the long-time strength of polymer materials
    Zezin, Yu.P.
    Bart, Yu.Ya.
    Tunda, M.A.
    Mechanics of Composite Materials, 1988, 23 (04) : 519 - 522
  • [26] Long-time diffusive behavior of solutions to a hyperbolic relaxation system
    Liu, HL
    Natalini, R
    ASYMPTOTIC ANALYSIS, 2001, 25 (01) : 21 - 38
  • [27] Long-time relaxation of interacting electrons in the regime of hopping conduction
    Tsigankov, DN
    Pazy, E
    Laikhtman, BD
    Efros, AL
    PHYSICAL REVIEW B, 2003, 68 (18):
  • [28] Long-time relaxation processes in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 2011, 112 : 469 - 478
  • [29] A THEORETICAL BASIS FOR VISCOELASTIC RELAXATION OF ELASTOMERS IN THE LONG-TIME LIMIT
    CURRO, JG
    PINCUS, P
    MACROMOLECULES, 1983, 16 (04) : 559 - 562
  • [30] APPLICATION OF HOLOGRAPHIC INTERFEROMETRY TO PREDICT LONG-TIME TORSIONAL RELAXATION
    HUNTER, AR
    MORTON, TM
    EXPERIMENTAL MECHANICS, 1975, 15 (04) : 153 - 160