Bessel type inequalities for non-orthonormal families of vectors in inner product spaces

被引:0
|
作者
Dragomir, Sever S. [1 ]
机构
[1] Victoria Univ, Sch Comp Sci & Math, POB 14428, Melbourne, Vic 8001, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some sharp Bessel type inequalities for non-orthonormal families of vectors in inner product spaces are given. Applications for complex numbers are also provided.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 50 条
  • [41] Cauchy-Schwarz norm inequalities for elementary operators and inner product type transformers generated by families of subnormal operators
    Jocic, Danko R.
    Lazarevic, Milan
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (02)
  • [42] Characterization of Inner Product Spaces by Unitary Carlsson Type Orthogonalities
    Dehghani, Mahdi
    [J]. FILOMAT, 2022, 36 (14) : 4655 - 4663
  • [43] A Gruss type discrete inequality in inner product spaces and applications
    Dragomir, SS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 494 - 511
  • [44] Probability measures on non-Archimedean inner product spaces
    Keller, HA
    Schikhof, WH
    [J]. P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 191 - 201
  • [45] An Introduction to Sobolev Gradients in Non-Inner Product Spaces
    Neuberger, J. W.
    [J]. SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 103 - 107
  • [46] Flow Problems and Non-Inner Product Sobolev Spaces
    Neuberger, J. W.
    [J]. SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 147 - 152
  • [47] On the completed hull of non-degenerate inner product spaces
    Hofmann, Timo
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (3-4): : 307 - 329
  • [48] SPECTRAL POINTS OF TYPE π+ AND TYPE π- OF CLOSED OPERATORS IN INDEFINITE INNER PRODUCT SPACES
    Philipp, Friedrich
    Trunk, Carsten
    [J]. OPERATORS AND MATRICES, 2015, 9 (03): : 481 - 506
  • [49] LANDAU AND GRUSS TYPE INEQUALITIES FOR INNER PRODUCT TYPE INTEGRAL TRANSFORMERS IN NORM IDEALS
    Jocic, Danko R.
    Krtinic, Dorde
    Moslehian, Mohammad Sal
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01): : 109 - 125
  • [50] A Functional equation related to inner product spaces in non-archimedean normed spaces
    Madjid Eshaghi Gordji
    Razieh Khodabakhsh
    Hamid Khodaei
    Choonkil Park
    Dong Yun shin
    [J]. Advances in Difference Equations, 2011