EFFECTIVE POTENTIAL OF A NON-ABELIAN SUPERSYMMETRIC THEORY

被引:13
|
作者
WOO, G
机构
[1] MIT,LAB NUCL SCI,CAMBRIDGE,MA 02139
[2] MIT,DEPT PHYS,CAMBRIDGE,MA 02139
来源
PHYSICAL REVIEW D | 1975年 / 12卷 / 04期
关键词
D O I
10.1103/PhysRevD.12.975
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:975 / 978
页数:4
相关论文
共 50 条
  • [31] On the supersymmetric non-abelian Born-Infeld action
    Bergshoeff, EA
    de Roo, M
    Sevrin, A
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 : 50 - 55
  • [32] Walls and vortices in supersymmetric non-Abelian gauge theories
    Isozumi, Y
    Nitta, M
    Ohashi, K
    Sakai, N
    [J]. PASCOS 2004: THEMES IN UNIFICATION,THE PRAN NATH FESTSCHRIFT, 2005, : 229 - 238
  • [33] EFFECTIVE ACTIONS IN NON-ABELIAN THEORIES
    DADDA, A
    DAVIS, AC
    DIVECCHIA, P
    [J]. PHYSICS LETTERS B, 1983, 121 (05) : 335 - 338
  • [34] Instability of effective potential for non-abelian toroidal D-brane
    Nojiri, S
    Odintsov, SD
    [J]. PHYSICS LETTERS B, 1998, 419 (1-4) : 107 - 114
  • [35] Crossover between Abelian and non-Abelian confinement in N=2 supersymmetric QCD
    Shifman, M.
    Yung, A.
    [J]. PHYSICAL REVIEW D, 2009, 79 (10):
  • [36] Non-Abelian density functional theory
    Vlasov, GV
    [J]. PHYSICAL REVIEW C, 1998, 58 (04): : 2581 - 2584
  • [37] Stabilization in non-abelian Iwasawa theory
    Bandini, Andrea
    Caldarola, Fabio
    [J]. ACTA ARITHMETICA, 2015, 169 (04) : 319 - 329
  • [38] Non-Abelian duality and confinement in N=2 supersymmetric QCD
    Shifman, M.
    Yung, A.
    [J]. PHYSICAL REVIEW D, 2009, 79 (12):
  • [39] Group theory of non-abelian vortices
    Minoru Eto
    Toshiaki Fujimori
    Sven Bjarke Gudnason
    Yunguo Jiang
    Kenichi Konishi
    Muneto Nitta
    Keisuke Ohashi
    [J]. Journal of High Energy Physics, 2010
  • [40] General theory of non-Abelian electrodynamics
    Anon
    [J]. Journal of New Energy, 1999, 4 (03): : 149 - 158