Parameter domains for generating spatial pattern: A comparison of reaction-diffusion and cell-chemotaxis models

被引:16
|
作者
Zhu, M [1 ]
Murray, JD [1 ]
机构
[1] UNIV WASHINGTON, DEPT MATH APPL, SEATTLE, WA 98195 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1995年 / 5卷 / 06期
关键词
D O I
10.1142/S0218127495001150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Reaction-diffusion and cell-chemotaxis mechanisms have been widely used as models for biological pattern formation. Applications require the formation of specific patterns. Both mechanisms involve local reaction dynamics and diffusion. In addition, the cell-chemotaxis mechanism involves chemotactic movement in response to an external gradient. It has been considered that chemotaxis is like negative diffusion which has a destabilizing effect. In this paper, we use a general weakly nonlinear analysis and numerical simulations to divide the parameter space into different domains giving rise to specific classes of spatial patterns, namely, spots and stripes, compare the robustness and sensitivity of the different models, and discuss spatial patterns intermediate between stripes and spots. We show that chemotaxis is not always a destabilizing factor - it can also have positive diffusion effect.
引用
收藏
页码:1503 / 1524
页数:22
相关论文
共 50 条
  • [21] Pattern formation in spatially heterogeneous Turing reaction-diffusion models
    Page, K
    Maini, PK
    Monk, NAM
    PHYSICA D-NONLINEAR PHENOMENA, 2003, 181 (1-2) : 80 - 101
  • [22] Pattern formation in reaction-diffusion models with nonuniform domain growth
    Crampin, EJ
    Hackborn, WW
    Maini, PK
    BULLETIN OF MATHEMATICAL BIOLOGY, 2002, 64 (04) : 747 - 769
  • [23] Pattern formation in reaction-diffusion models with nonuniform domain growth
    E. J. Crampin
    W. W. Hackborn
    P. K. Maini
    Bulletin of Mathematical Biology, 2002, 64 : 747 - 769
  • [24] A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis
    MacDonald, G.
    Mackenzie, J. A.
    Nolan, M.
    Insall, R. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 309 : 207 - 226
  • [25] Novel Aspects in Pattern Formation Arise from Coupling Turing Reaction-Diffusion and Chemotaxis
    Kunz, Camile Fraga Delfino
    Gerisch, Alf
    Glover, James
    Headon, Denis
    Painter, Kevin John
    Matthaeus, Franziska
    BULLETIN OF MATHEMATICAL BIOLOGY, 2024, 86 (01)
  • [26] Estimating spatial and parameter error in parameterized nonlinear reaction-diffusion equations
    Carnes, B. R.
    Carey, G. F.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2007, 23 (09): : 835 - 854
  • [27] Optimal spatial monitoring of populations described by reaction-diffusion models
    Parisey, Nicolas
    Leclerc, Melen
    Adamczyk-Chauvat, Katarzyna
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 534
  • [28] STABILITY ANALYSIS OF REACTION-DIFFUSION MODELS ON EVOLVING DOMAINS: THE EFFECTS OF CROSS-DIFFUSION
    Madzvamuse, Anotida
    Ndakwo, Hussaini S.
    Barreira, Raquel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 2133 - 2170
  • [29] Effect of Spatial Average on the Spatiotemporal Pattern Formation of Reaction-Diffusion Systems
    Qingyan Shi
    Junping Shi
    Yongli Song
    Journal of Dynamics and Differential Equations, 2022, 34 : 2123 - 2156
  • [30] The analysis of spatial pattern formation in reaction-diffusion system near bifurcation
    Kurushina, Svetlana E.
    Computer Optics, 2010, 34 (03) : 340 - 349