Fixed point properties for semigroups of nonexpansive mappings on convex sets in dual Banach spaces

被引:6
|
作者
Lau, Anthony To-Ming [1 ]
Zhang, Yong [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
amenability; semigroups; non-expansive mappings; weak*-compact convex sets; common fixed point; invariant mean; submean;
D O I
10.2478/aupcsm-2018-0007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan's inequality for convex functions.
引用
收藏
页码:67 / 87
页数:21
相关论文
共 50 条
  • [41] Weak fixed point property for nonexpansive mappings with respect to orbits in Banach spaces
    Amini-Harandi, A.
    Fakhar, M.
    Hajisharifi, H. R.
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2016, 18 (03) : 601 - 607
  • [42] Uniformly nonsquare Banach spaces have the fixed point property for nonexpansive mappings
    García-Falset, J
    Llorens-Fuster, E
    Mazcuñan-Navarro, EM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (02) : 494 - 514
  • [43] Some renormings of Banach spaces with the weak fixed point property for nonexpansive mappings
    Dutta, Gopal
    Veeramani, P.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 171 - 180
  • [44] Fixed Point Theorems for Suzuki Generalized Nonexpansive Multivalued Mappings in Banach Spaces
    Abkar, A.
    Eslamian, M.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [45] Some renormings of Banach spaces with the weak fixed point property for nonexpansive mappings
    Gopal Dutta
    P. Veeramani
    [J]. Acta Scientiarum Mathematicarum, 2019, 85 : 171 - 180
  • [46] Iteration process for solving a fixed point problem of nonexpansive mappings in Banach spaces
    Khoonyang S.
    Inta M.
    Cholamjiak P.
    [J]. Afrika Matematika, 2018, 29 (5-6) : 783 - 792
  • [47] Some fixed point results for enriched nonexpansive type mappings in Banach spaces
    Shukla, Rahul
    Pant, Rajendra
    [J]. APPLIED GENERAL TOPOLOGY, 2022, 23 (01): : 31 - 43
  • [48] ERGODIC AND FIXED POINT THEOREMS FOR BREGMAN NONEXPANSIVE SEQUENCES AND MAPPINGS IN BANACH SPACES
    Rouhani, Behzad Djafari
    Khatibzadeh, Hadi
    Mohebbi, Vahid
    [J]. Applied Set-Valued Analysis and Optimization, 2022, 4 (03): : 311 - 321
  • [49] INVARIANT-MEANS AND SEMIGROUPS OF NONEXPANSIVE-MAPPINGS ON UNIFORMLY CONVEX BANACH-SPACES
    LAU, ATM
    TAKAHASHI, W
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 153 (02) : 497 - 505
  • [50] Some fixed point theorems for generalized enriched nonexpansive mappings in Banach spaces
    Rahul Shukla
    Rekha Panicker
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1087 - 1101