Graphs with equal secure total domination and inverse secure total domination numbers

被引:8
|
作者
Kulli, V. R. [1 ]
Chaluvaraju, B. [2 ]
Kumara, M. [2 ]
机构
[1] Gulbarga Univ, Dept Math, Gulbarga 585106, Karnataka, India
[2] Bangalore Univ, Dept Math, Jnana Bharathi Campus, Bangalore 560056, Karnataka, India
来源
关键词
Secure total dominating set; Inverse secure total dominating set; Secure total domination number; Inverse secure total domination number;
D O I
10.1080/02522667.2017.1379233
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
A secure total dominating set of a graph G = (V, E) is a total dominating set D O V(G) with the property that for each u OE V(G) -D, there exists v OE D adjacent to u such that (D -{v}) is an element of {u} is a total dominating set. If V(G) -D contains a secure total dominating set D is an element of of G, then D is an element of is called an inverse secure total dominating set with respect to D. The secure and inverse secure total domination number of G is the minimum cardinality among all secure and inverse secure total dominating sets of G and is denoted by gst(G) and 1(), stG.respectively. In this paper, we find some graphs for which 1(G)(G). ststGG..-= Also we obtain some graphs for which gamma(st)(G) = gamma(-1)(st) (G) = p/2.
引用
收藏
页码:467 / 473
页数:7
相关论文
共 50 条
  • [21] Inverse Signed Total Domination Numbers of Some Kinds of Graphs
    Huang, Zhongsheng
    Feng, Zhifang
    Xing, Huaming
    [J]. INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2012, 308 : 315 - 321
  • [22] Trees with equal total domination and paired-domination numbers
    Henning, MA
    [J]. UTILITAS MATHEMATICA, 2006, 69 : 207 - 218
  • [23] On Secure Domination in Graphs
    Merouane, Houcine Boumediene
    Chellali, Mustapha
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (10) : 786 - 790
  • [24] On the total domination subdivision numbers in graphs
    Sheikholeslami, Seyed Mahmoud
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 468 - 473
  • [25] Total and Secure Domination for Corona Product of Two Fuzzy Soft Graphs
    Karbasioun, Asefeh
    Ameri, Reza
    [J]. FUZZY INFORMATION AND ENGINEERING, 2021, 13 (01) : 127 - 138
  • [26] Total domination and total domination subdivision numbers
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 38 : 229 - 235
  • [27] GRAPHS WITH EQUAL DOMINATION AND CERTIFIED DOMINATION NUMBERS
    Dettlaff, Magda
    Lemanska, Magdalena
    Miotk, Mateusz
    Topp, Jerzy
    Ziemann, Radoslaw
    Zylinski, Pawel
    [J]. OPUSCULA MATHEMATICA, 2019, 39 (06) : 815 - 827
  • [28] Graphs with equal domination and independent domination numbers
    Gupta, Purnima
    Singh, Rajesh
    Arumugam, S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (02) : 691 - 696
  • [29] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    [J]. DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49
  • [30] ON GRAPHS WITH EQUAL DOMINATION AND INDEPENDENT DOMINATION NUMBERS
    TOPP, J
    VOLKMANN, L
    [J]. DISCRETE MATHEMATICS, 1991, 96 (01) : 75 - 80