INTEGRABILITY OF LOW PARTICLE-NUMBER MODELS FOR SOLIDS

被引:0
|
作者
HENRY, BI
机构
来源
AUSTRALIAN JOURNAL OF PHYSICS | 1991年 / 44卷 / 01期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a model Hamiltonian that describes, for different choices of the parameters, simple anharmonic models for a solid. We have applied the Painleve test to identify integrable and non-integrable cases. In the integrable cases the identification has been confirmed by deriving explicit expressions for the additional conserved quantities. The analysis demonstrates the sensitivity of lattice integrability to both the order of the anharmonicity and the nature of the boundary conditions.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Band crossings in 168Ta: A particle-number conserving analysis
    Zhang, Zhen-Hua
    Huang, Miao
    [J]. NUCLEAR PHYSICS A, 2019, 981 : 107 - 117
  • [42] A particle-number expansion beyond self-consistent field theory
    Papenbrock, T
    Seligman, TH
    [J]. PHYSICS LETTERS A, 1996, 218 (3-6) : 229 - 234
  • [43] Finite-size and particle-number effects in an ultracold Fermi gas at unitarity
    Braun, Jens
    Diehl, Sebastian
    Scherer, Michael M.
    [J]. PHYSICAL REVIEW A, 2011, 84 (06)
  • [44] Combining spatiotemporal and particle-number degrees of freedom (vol 98, 043841, 2018)
    Roux, Filippus S.
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)
  • [45] Particle-number projection in the finite-temperature mean-field approximation
    Fanto, P.
    Alhassid, Y.
    Bertsch, G. F.
    [J]. PHYSICAL REVIEW C, 2017, 96 (01)
  • [46] Calibration and Experimental Study of a Self-Developed Particle-Number Measurement Instrument
    Li, Guangze
    Luo, Weixian
    Zhang, Chenglin
    Cui, Boxuan
    Chang, Liuyong
    Chen, Longfei
    [J]. PROCESSES, 2024, 12 (01)
  • [47] CRANKING MODEL CALCULATIONS OF HIGH-SPIN STATES WITH PARTICLE-NUMBER PROJECTION
    MA, CW
    RASMUSSEN, JO
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (04): : 529 - 529
  • [48] Quantum algorithms with local particle-number conservation: Noise effects and error correction
    Streif, Michael
    Leib, Martin
    Wudarski, Filip
    Rieffel, Eleanor
    Wang, Zhihui
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [49] A QUASIPARTICLE CLUSTER-VIBRATION MODEL (QVCM) AND THE PARTICLE-NUMBER PROJECTION RULE
    ALLAART, K
    HOFSTRA, P
    PAAR, V
    [J]. INSTITUTE OF PHYSICS CONFERENCE SERIES, 1982, (62): : 54 - 55
  • [50] PARTICLE-NUMBER CONSERVING CALCULATION OF THE BANDHEAD MOMENTS OF INERTIA OF IDENTICAL SD BANDS
    JIN, TH
    ZHAO, ZJ
    ZENG, JY
    [J]. HIGH ENERGY PHYSICS & NUCLEAR PHYSICS-ENGLISH EDITION, 1993, 17 (04): : 411 - 421