Dynamics of a Parametrically Excited System with Two Forcing Terms

被引:18
|
作者
Sofroniou, Anastasia [1 ]
Bishop, Steven [2 ]
机构
[1] Univ West London, Sch Comp & Technol, St Marys Rd, London W5 5RF, England
[2] UCL, Dept Math, London WC1E 6BT, England
来源
MATHEMATICS | 2014年 / 2卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
parametric excitation; double forcing; quasiperiodicity; route to chaos;
D O I
10.3390/math2030172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.
引用
收藏
页码:172 / 195
页数:24
相关论文
共 50 条
  • [1] The dynamics of two parametrically excited pendula with impacts
    Quinn, DD
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (06): : 1975 - 1988
  • [2] Complex dynamics in Josephson system with two external forcing terms
    Yang, Jianping
    Feng, Wei
    Jing, Zhujun
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (01) : 235 - 256
  • [3] Dynamics of a Two-Mass Parametrically Excited Vibration Machine
    Antipov, V. I.
    Palashova, I. V.
    [J]. JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY, 2010, 39 (03): : 238 - 243
  • [4] Complex dynamics of a 'simple' mechanical system: The parametrically excited pendulum
    Bishop, SR
    [J]. IUTAM SYMPOSIUM ON RECENT DEVELOPMENTS IN NON-LINEAR OSCILLATIONS OF MECHANICAL SYSTEMS, 2000, 77 : 35 - 43
  • [5] Compound bursting dynamics in a parametrically and externally excited mechanical system
    Wei, Mengke
    Jiang, Wenan
    Ma, Xindong
    Zhang, Xiaofang
    Han, Xiujing
    Bi, Qinsheng
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 143
  • [6] Dynamics of two solitary wave interaction in a parametrically excited water trough
    Wang, W
    Wang, XL
    Wang, JY
    Wei, RJ
    [J]. NONLINEAR ACOUSTICS IN PERSPECTIVE, 1996, : 439 - 444
  • [7] CHAOTIC DYNAMICS OF PARAMETRICALLY EXCITED OSCILLATORS
    VAVRIV, DM
    RYABOV, VB
    CHERNYSHOV, IY
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1991, 61 (12): : 1 - 11
  • [8] DYNAMICS OF A PARAMETRICALLY EXCITED DOUBLE PENDULUM
    SKELDON, AC
    [J]. PHYSICA D, 1994, 75 (04): : 541 - 558
  • [9] Dynamics of a parametrically excited simple pendulum
    Depetri, Gabriela I.
    Pereira, Felipe A. C.
    Marin, Boris
    Baptista, Murilo S.
    Sartorelli, J. C.
    [J]. CHAOS, 2018, 28 (03)
  • [10] Vibrations in a parametrically excited system
    Cveticanin, L
    [J]. JOURNAL OF SOUND AND VIBRATION, 2000, 229 (02) : 245 - 271