COMMENTS ON THE SYMMETRY STRUCTURE OF BI-HAMILTONIAN SYSTEMS

被引:0
|
作者
ANDERSON, RL [1 ]
FOKAS, AS [1 ]
机构
[1] CLARKSON COLL TECHNOL,DEPT MATH & COMP SCI,POTSDAM,NY 13676
关键词
D O I
10.1007/BF01596193
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:365 / 369
页数:5
相关论文
共 50 条
  • [1] SYMMETRY PROPERTIES AND BI-HAMILTONIAN STRUCTURE OF THE TODA LATTICE
    LEO, M
    LEO, RA
    SOLIANI, G
    SOLOMBRINO, L
    MANCARELLA, G
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (04) : 267 - 272
  • [2] SYMMETRY PROPERTIES AND BI-HAMILTONIAN STRUCTURE OF THE TODA LATTICE
    LEO, M
    LEO, RA
    SOLIANI, G
    SOLOMBRINO, L
    MANCARELLA, G
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1987, 28 (1-2) : 248 - 248
  • [3] Supersymmetric Bi-Hamiltonian Systems
    Sylvain Carpentier
    Uhi Rinn Suh
    [J]. Communications in Mathematical Physics, 2021, 382 : 317 - 350
  • [4] Integrable Hamiltonian systems associated to families of curves and their bi-Hamiltonian structure
    Vanhaecke, P
    [J]. INTEGRABLE SYSTEMS AND FOLIATIONS, 1997, 145 : 187 - 212
  • [5] Quantum bi-Hamiltonian systems
    Cariñena, JF
    Grabowski, J
    Marmo, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4797 - 4810
  • [6] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543
  • [7] QUANTIZATION OF BI-HAMILTONIAN SYSTEMS
    KAUP, DJ
    OLVER, PJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 113 - 117
  • [8] Supersymmetric Bi-Hamiltonian Systems
    Carpentier, Sylvain
    Suh, Uhi Rinn
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 317 - 350
  • [9] Singularities of Bi-Hamiltonian Systems
    Alexey Bolsinov
    Anton Izosimov
    [J]. Communications in Mathematical Physics, 2014, 331 : 507 - 543
  • [10] THE LIE-ALGEBRA STRUCTURE OF DEGENERATE HAMILTONIAN AND BI-HAMILTONIAN SYSTEMS
    FUCHSSTEINER, B
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04): : 1082 - 1104