Supersymmetric Bi-Hamiltonian Systems

被引:9
|
作者
Carpentier, Sylvain [1 ]
Suh, Uhi Rinn [2 ,3 ]
机构
[1] Columbia Univ, Dept Math, Broadway & 116th, New York, NY 10027 USA
[2] Seoul Natl Univ, Dept Math Sci, GwanAkRo 1, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, GwanAkRo 1, Seoul 08826, South Korea
关键词
D O I
10.1007/s00220-021-03974-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct super Hamiltonian integrable systems within the theory of supersymmetric Poisson vertex algebras (SUSY PVAs). We provide a powerful tool for the understanding of SUSY PVAs called the super master formula. We attach some Lie superalgebraic data to a generalized SUSY W-algebra and show that it is equipped with two compatible SUSY PVA brackets. We reformulate these brackets in terms of odd differential operators and obtain super bi-Hamiltonian hierarchies after performing a supersymmetric analog of the Drinfeld-Sokolov reduction on these operators. As an example, an integrable system is constructed from g=osp(2 vertical bar 2).
引用
收藏
页码:317 / 350
页数:34
相关论文
共 50 条
  • [1] Supersymmetric Bi-Hamiltonian Systems
    Sylvain Carpentier
    Uhi Rinn Suh
    Communications in Mathematical Physics, 2021, 382 : 317 - 350
  • [2] A Bi-Hamiltonian Supersymmetric Geodesic Equation
    Jonatan Lenells
    Letters in Mathematical Physics, 2008, 85 : 55 - 63
  • [3] A bi-Hamiltonian supersymmetric geodesic equation
    Lenells, Jonatan
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 85 (01) : 55 - 63
  • [4] THE BI-HAMILTONIAN STRUCTURE OF FULLY SUPERSYMMETRIC KORTEWEG-DEVRIES SYSTEMS
    OEVEL, W
    POPOWICZ, Z
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 139 (03) : 441 - 460
  • [5] Quantum bi-Hamiltonian systems
    Cariñena, JF
    Grabowski, J
    Marmo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4797 - 4810
  • [6] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543
  • [7] Singularities of Bi-Hamiltonian Systems
    Alexey Bolsinov
    Anton Izosimov
    Communications in Mathematical Physics, 2014, 331 : 507 - 543
  • [8] QUANTIZATION OF BI-HAMILTONIAN SYSTEMS
    KAUP, DJ
    OLVER, PJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 113 - 117
  • [9] Alternative structures and bi-Hamiltonian systems
    Marmo, G
    Morandi, G
    Simoni, A
    Ventriglia, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (40): : 8393 - 8406
  • [10] BI-HAMILTONIAN SYSTEMS AND MASLOV INDEXES
    SCHERER, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) : 3746 - 3756