FRACTAL THEORY

被引:0
|
作者
HERMANN, R
机构
来源
MATHEMATICAL INTELLIGENCER | 1991年 / 13卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:4 / &
相关论文
共 50 条
  • [1] Counterexamples in theory of fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Nowak, Magdalena
    Sanchez-Granero, M. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 89 : 210 - 223
  • [2] Artists and fractal theory
    Conde, S
    Debailleux, HF
    [J]. OEIL-MAGAZINE INTERNATIONAL D ART, 1999, (506): : 114 - 114
  • [3] To the Origins of Fractal Theory
    Knyazev, Victor N.
    Morozov, Maxim Yu
    [J]. VOPROSY FILOSOFII, 2022, (09) : 116 - 127
  • [4] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    [J]. PHYSICA A, 1990, 163 (01): : 316 - 324
  • [5] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    ERZAN, A
    EVERTSZ, C
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (07) : 861 - 864
  • [6] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    [J]. PHYSICA SCRIPTA, 1989, T25 : 230 - 230
  • [7] FRACTAL THEORY OF DOME FORMATION
    Arkhangelskii, V. Yu.
    [J]. CHEMICAL AND PETROLEUM ENGINEERING, 2011, 47 (5-6) : 383 - 389
  • [8] On fractal theory for porous media
    Park, Y
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (5-6) : 987 - 998
  • [9] The theory of fractal antenna arrays
    Kravchenko, VF
    [J]. IVTH INTERNATIONAL CONFERENCE ON ANTENNA THEORY AND TECHNIQUES, VOLS 1 AND 2, PROCEEDINGS, 2003, : 183 - 189
  • [10] FRACTAL APPROXIMATION IN THE THEORY OF ELASTICITY
    PANAGIOTOPOULOS, PD
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T658 - T659