Counterexamples in theory of fractal dimension for fractal structures

被引:19
|
作者
Fernandez-Martinez, M. [1 ]
Nowak, Magdalena [2 ]
Sanchez-Granero, M. A. [3 ]
机构
[1] MDE UPCT, Spanish Air Force Acad, Univ Ctr Def, Murcia 30720, Spain
[2] Jan Kochanowski Univ Kielce, Swietokrzyska 15, PL-25406 Kielce, Poland
[3] Univ Almeria, Dept Math, Almeria 04120, Spain
关键词
Fractal; Fractal structure; Box-counting dimension; Hausdorff dimension; IFS-attractor; Counterexample;
D O I
10.1016/j.chaos.2015.10.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractal dimension constitutes the main tool to test for fractal patterns in Euclidean contexts. For this purpose, it is always used the box dimension, since it is easy to calculate, though the Hausdorff dimension, which is the oldest and also the most accurate fractal dimension, presents the best analytical properties. Additionally, fractal structures provide an appropriate topological context where new models of fractal dimension for a fractal structure could be developed in order to generalize the classical models of fractal dimension. In this survey, we gather different definitions and counterexamples regarding these new models of fractal dimension in order to show the reader how they behave mathematically with respect to the classical models, and also to point out which features of such models can be exploited to powerful effect in applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 50 条
  • [1] Fractal dimension for fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2014, 163 : 93 - 111
  • [2] Fractal dimension for fractal structures: A Hausdorff approach
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1825 - 1837
  • [3] A new fractal dimension for curves based on fractal structures
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 203 : 108 - 124
  • [4] Fractal dimension for fractal structures: Applications to the domain of words
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    Segovia, J. E. Trinidad
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 1193 - 1199
  • [5] Fractal dimension for fractal structures: A Hausdorff approach revisited
    Fernandez-Martinez, M.
    Sanchez-Granero, M. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 321 - 330
  • [6] INFORMATION DIMENSION IN FRACTAL STRUCTURES
    PITSIANIS, N
    BLERIS, GL
    ARGYRAKIS, P
    [J]. PHYSICAL REVIEW B, 1989, 39 (10): : 7097 - 7100
  • [7] Constant Acceleration in Fractal Structures with Fractal Dimension D = 2
    Yushchenko, Alexander
    Jeong, Yeuncheol
    Yushchenko, Volodymyr
    Demessinova, Aizat
    Jeong, Kyung Sook
    [J]. JOURNAL OF ASTRONOMY AND SPACE SCIENCES, 2023, 40 (01) : 29 - 33
  • [8] ON THE FRACTAL DIMENSION AND CORRELATIONS IN PERCOLATION THEORY
    KAPITULNIK, A
    GEFEN, Y
    AHARONY, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (5-6) : 807 - 814
  • [9] Fractal Dimension of Color Fractal Images
    Ivanovici, Mihai
    Richard, Noel
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (01) : 227 - 235
  • [10] APPROXIMATION WITH FRACTAL FUNCTIONS BY FRACTAL DIMENSION
    Liang, Y. S.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)