REMARKS FOR ONE-DIMENSIONAL FRACTIONAL EQUATIONS

被引:3
|
作者
Ferrara, Massimiliano [1 ,2 ]
Bisci, Giovanni Molica [3 ]
机构
[1] Univ Reggio Calabria, I-89127 Reggio Di Calabria, Italy
[2] CRIOS Univ Bocconi Milan, I-89127 Reggio Di Calabria, Italy
[3] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89124 Reggio Di Calabria, Italy
关键词
fractional differential equations; Caputo fractional derivatives; variational methods;
D O I
10.7494/OpMath.2014.34.4.691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of one-dimensional Dirichlet boundary value problems involving the Caputo fractional derivatives. The existence of infinitely many solutions for this equations is obtained by exploiting a recent abstract result. Concrete examples of applications are presented.
引用
收藏
页码:691 / 698
页数:8
相关论文
共 50 条
  • [41] Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods
    Zhang, Xindong
    Liu, Juan
    Wen, Juan
    Tang, Bo
    He, Yinnian
    NUMERICAL ALGORITHMS, 2013, 63 (01) : 143 - 164
  • [42] An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations
    Qiu, Wenlin
    Chen, Hongbin
    Zheng, Xuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 166 : 298 - 314
  • [43] A space-time spectral method for one-dimensional time fractional convection diffusion equations
    Yu, Zhe
    Wu, Boying
    Sun, Jiebao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2634 - 2648
  • [44] Impulsive Noise Driven One-Dimensional Higher-Order Fractional Partial Differential Equations
    Xie, Bin
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (01) : 122 - 145
  • [45] All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations
    Donatelli, Marco
    Krause, Rolf
    Mazza, Mariarosa
    Trotti, Ken
    CALCOLO, 2021, 58 (04)
  • [46] All-at-once multigrid approaches for one-dimensional space-fractional diffusion equations
    Marco Donatelli
    Rolf Krause
    Mariarosa Mazza
    Ken Trotti
    Calcolo, 2021, 58
  • [47] Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix
    Xie, Jiaquan
    Huang, Qingxue
    Yang, Xia
    SPRINGERPLUS, 2016, 5
  • [48] Remarks on blowup of solutions for one-dimensional compressible Navier-Stokes equations with Maxwell's law
    Dong, Jianwei
    Zhang, Qiao
    Yang, Yong
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (10) : 4523 - 4532
  • [49] Remarks on One-Dimensional Compressible Navier-Stokes Equations with Density-Dependent Viscosity and Vacuum
    Guo, Zhen Hua
    Zhu, Chang Jiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 2015 - 2030
  • [50] Remarks on One-Dimensional Compressible Navier-Stokes Equations with Density-Dependent Viscosity and Vacuum
    Zhen Hua GUO Center for Nonlinear Studies and Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (10) : 2015 - 2030