A Q-INFINITY-MANIFOLD TOPOLOGY OF THE SPACE OF LIPSCHITZ-MAPS

被引:3
|
作者
SAKAI, K [1 ]
机构
[1] UNIV TSUKUBA,INST MATH,TSUKUBA 305,JAPAN
关键词
THE SPACE OF LIPSCHITZ MAPS; THE WEAK TOPOLOGY; THE DIRECT LIMIT; Q-INFINITY-MANIFOLD; EUCLIDEAN POLYHEDRON; LIPSCHITZ MANIFOLD; ANLE;
D O I
10.1016/0166-8641(93)90097-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a nondiscrete metric compactum and Y an Euclidean polyhedron without isolated Points or a Lipschitz n-manifold (n > 0). Let LIP(X, Y)w be the space of Lipschitz maps from X to Y admitting the weak topology with respect to the tower 1-LIP(X, Y) subset-of 2-LIP(X, Y) subset-of 3-LIP(X, Y) subset-of ..., where k-LIP(X, Y) denotes the space of Lipschitz maps with Lipschitz constant less-than-or-equal-to k with the sup-metric. It is proved that LIP(X, Y)w is a manifold modeled on Q(infinity) = dir lim Q(n), the direct limit of Hilbert cubes.
引用
收藏
页码:7 / 18
页数:12
相关论文
共 50 条