DISTRIBUTION OF PRIMES OF IMAGINARY QUADRATIC FIELDS IN SECTORS

被引:4
|
作者
ZARZYCKI, P [1 ]
机构
[1] UNIV GDANSK,DEPT MATH,PL-80952 GDANSK,POLAND
关键词
D O I
10.1016/S0022-314X(05)80032-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let π(x; φ1, φ2; β, γ) be the number of primes p from ℤ such that p≡β (mod γ), N(p)≤x, φ1≤arg p≤φ2. We prove that for sufficiently large x. π (x + y ; φ{symbol}1, φ{symbol}2 ; β, y) - π (x ; φ{symbol}1, φ{symbol}2 ; β, y) ∼ frac(4 y (φ{symbol}2 - φ{symbol}1), 2 π φ{symbol} (y) log x). if only x2/3+ε≤y=o(x) and φ2-φ1≫x(-1/3)+ε. This improves Maknys' result which is 11/16+ε≤y=o(x) and φ2-φ1≫x(-5/16)+ε. © 1991 Academic Press, Inc.
引用
收藏
页码:152 / 160
页数:9
相关论文
共 50 条