ON A MINIMAL PROPERTY OF TRIGONOMETRIC INTERPOLATION AT EQUIDISTANT NODES

被引:0
|
作者
SUNDERMANN, B
机构
关键词
D O I
10.1007/BF02277186
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:371 / 372
页数:2
相关论文
共 50 条
  • [21] THE LEBESGUE CONSTANT FOR LAGRANGE INTERPOLATION ON EQUIDISTANT NODES
    MILLS, TM
    SMITH, SJ
    NUMERISCHE MATHEMATIK, 1992, 61 (01) : 111 - 115
  • [22] Barycentric rational interpolation at quasi-equidistant nodes
    Hormann, Kai
    Klein, Georges
    De Marchi, Stefano
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5 : 1 - 6
  • [23] Norms on L of Periodic Interpolation Splines with Equidistant Nodes
    Yu. N. Subbotin
    S. A. Telyakovskii
    Mathematical Notes, 2003, 74 : 100 - 109
  • [24] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Bos, Len
    De Marchi, Stefano
    Hormann, Kai
    Klein, Georges
    NUMERISCHE MATHEMATIK, 2012, 121 (03) : 461 - 471
  • [25] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Len Bos
    Stefano De Marchi
    Kai Hormann
    Georges Klein
    Numerische Mathematik, 2012, 121 : 461 - 471
  • [26] LOCAL CONVERGENCE OF LAGRANGE INTERPOLATION ASSOCIATED WITH EQUIDISTANT NODES
    LI, X
    SAFF, EB
    JOURNAL OF APPROXIMATION THEORY, 1994, 78 (02) : 213 - 225
  • [27] Norms on L of periodic interpolation splines with equidistant nodes
    Subbotin, YN
    Telyakovskii, SA
    MATHEMATICAL NOTES, 2003, 74 (1-2) : 100 - 109
  • [28] A NOTE ON HERMITE-FEJER INTERPOLATION ON EQUIDISTANT NODES
    MILLS, TM
    SMITH, SJ
    ACTA MATHEMATICA HUNGARICA, 1994, 63 (01) : 45 - 51
  • [29] On convergence of odd trigonometric interpolation polynomials with equidistant points in the metric L
    Kolesnikov, V. S.
    ANALYSIS MATHEMATICA, 2016, 42 (04) : 371 - 385
  • [30] On convergence of odd trigonometric interpolation polynomials with equidistant points in the metric L
    V. S. Kolesnikov
    Analysis Mathematica, 2016, 42 : 371 - 385