Multiplicate Particle Swarm Optimization Algorithm

被引:2
|
作者
Gao, Shang [1 ]
Zhang, Zaiyue [1 ]
Cao, Cungen [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Engn & Comp Sci, Zhenjiang 212003, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
关键词
particle swarm optimization algorithm; convergence; parameter;
D O I
10.4304/jcp.5.1.150-157
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using Particle Swarm Optimization to handle complex functions with high-dimension it has the problems of low convergence speed and sensitivity to local convergence. The convergence of particle swarm algorithm is studied, and the condition for the convergence of particle swarm algorithm is given. Results of numerical tests show the efficiency of the results. Base on the idea of specialization and cooperation of particle swarm optimization algorithm, a multiplicate particle swarm optimization algorithm is proposed. In the new algorithm, particles use five different hybrid flight rules in accordance with section probability. This algorithm can draw on each other ' s merits and raise the level together The method uses not only local information but also global information and combines the local search with the global search to improve its convergence. The efficiency of the new algorithm is verified by the simulation results of five classical test functions and the comparison with other algorithms. The optimal section probability can get through sufficient experiments, which are done on the different section probability in the algorithms.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 50 条
  • [21] Novel particle swarm optimization algorithm
    Gong, Dun-Wei
    Zhang, Yong
    Zhang, Jian-Hua
    Zhou, Yong
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2008, 25 (01): : 111 - 114
  • [22] An Improved Particle Swarm Optimization Algorithm
    Chang, Chunguang
    Wu, Xi
    CYBER SECURITY INTELLIGENCE AND ANALYTICS, 2020, 928 : 1406 - 1410
  • [23] Particle swarm optimization system algorithm
    Cai, Manjun
    Zhang, Xuejian
    Tian, Guangjun
    Liu, Jincun
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2007, 2 : 388 - +
  • [24] An Improved Particle Swarm Optimization Algorithm
    Yu, Yu Feng
    Li, Guo
    Xu, Chen
    FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY III, PTS 1-3, 2013, 401 : 1328 - 1335
  • [25] A global particle swarm optimization algorithm
    Gao, Li-Qun
    Li, Ruo-Ping
    Zou, De-Xuan
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2011, 32 (11): : 1538 - 1541
  • [26] Survey of particle swarm optimization algorithm
    Ni, Qing-Jian
    Xing, Han-Cheng
    Zhang, Zhi-Zheng
    Wang, Zhen-Zhen
    Wen, Ju-Feng
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2007, 20 (03): : 349 - 357
  • [27] A Hybrid Particle Swarm Optimization Algorithm
    Qi Changxing
    Bi Yiming
    Han Huihua
    Li Yong
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2187 - 2190
  • [28] An Improved Particle Swarm Optimization Algorithm
    Yang, Huafen
    Yang, You
    Kong, Dejian
    Dong, Dechun
    Yang, Zuyuan
    Zhang, Lihui
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 407 - 411
  • [29] A modified Particle Swarm Optimization algorithm
    Liu Yitong
    Fu Mengyin
    Gao Hongbin
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 479 - +
  • [30] An Improved Particle Swarm Optimization Algorithm
    Pan, Dazhi
    Liu, Zhibin
    EMERGING RESEARCH IN ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, 2011, 237 : 550 - +