GENERALIZED HEXAGONS AS AMALGAMATIONS OF GENERALIZED QUADRANGLES

被引:1
|
作者
VANMALDEGHEM, H [1 ]
BLOEMEN, I [1 ]
机构
[1] STATE UNIV GHENT,SEMINARIE MEETKUNDE & COMBINATORIEK,B-9000 GHENT,BELGIUM
关键词
D O I
10.1006/eujc.1993.1062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the notion of regular point p in a generalized hexagon and show how a derived geometry at such a point can be defined. We motivate this by proving that, for finite generalized hexagons of order (s, t), this derivation is a generalized quadrangle iff s = t. Moreover, if the generalized hexagon has also a regular line incident with p, then one can amalgamate the two corresponding generalized quadrangles and in this way reconstruct the generalized hexagon. The small Moufang hexagons of order 3h, for small h, are characterized in this manner. © 1993 Academic Press, Inc.
引用
收藏
页码:593 / 604
页数:12
相关论文
共 50 条
  • [31] Generalized hexagons and Singer geometries
    Joseph A. Thas
    Hendrik Van Maldeghem
    [J]. Designs, Codes and Cryptography, 2008, 47 : 249 - 266
  • [32] GENERALIZED QUADRANGLES AND FLOCKS OF CONES
    THAS, JA
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (04) : 441 - 452
  • [33] Parameters of translation generalized quadrangles
    Rosehr, N
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (03) : 329 - 340
  • [34] GENERALIZED QUADRANGLES OF EVEN ORDER
    PAYNE, SE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A164 - A164
  • [35] GENERALIZED QUADRANGLES WITH SYMMETRY 2
    PAYNE, SE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A171 - A171
  • [36] GENERALIZED QUADRANGLES IN PROJECTIVE SPACES
    BUEKENHOUT, F
    LEFEVRE, C
    [J]. ARCHIV DER MATHEMATIK, 1974, 25 (05) : 540 - 552
  • [37] Groups of Projectivities of Generalized Quadrangles
    Leen Brouns
    Katgrin Tent
    Hendrik Van Maldeghem
    [J]. Geometriae Dedicata, 1998, 73 : 165 - 180
  • [38] SMALL EXTENDED GENERALIZED QUADRANGLES
    CAMERON, PJ
    FISHER, PH
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (05) : 403 - 413
  • [39] Finite Translation Generalized Quadrangles
    Thas, J. A.
    [J]. PERSPECTIVES IN MATHEMATICAL SCIENCES II: PURE MATHEMATICS, 2009, 8 : 223 - 246
  • [40] Identifying codes for generalized quadrangles
    Tamás Héger
    György Kiss
    Anamari Nakić
    Leo Storme
    [J]. Journal of Geometry, 2024, 115