AN ATOMIC POPULATION AS THE EXPECTATION VALUE OF A QUANTUM OBSERVABLE

被引:70
|
作者
BADER, RFW
ZOU, PF
机构
[1] Department of Chemistry, McMaster University, Hamilton
关键词
D O I
10.1016/0009-2614(92)85367-J
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dirac defines an observable to be a real dynamical variable with a complete set of eigenstates. It is shown that the density operator rho = SIGMA(i) delta(r(i) - r), is a quantum-mechanical observable whose expectation value is the particle density and that the integral form of this operator, the number operator N, is also a quantum-mechanical observable whose expectation value is the average number of particles. The principle of stationary action defines the expectation value of the equation of motion for every observable. Using this principle it is demonstrated that an atomic population is the expectation value of the observable N when rho is the electron density operator. An atom and its population are defined in terms of experimentally measurable expectation values of the observables rho and N.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 50 条
  • [41] Measuring Observable Quantum Contextuality
    de Barros, Jose Acacio
    Dzhafarov, Ehtibar N.
    Kujala, Janne V.
    Oas, Gary
    QUANTUM INTERACTION, QI 2015, 2016, 9535 : 36 - 47
  • [42] Quantum dynamics and entanglement in coherent transport of atomic population
    Olsen, M. K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (09)
  • [43] Reinforcement learning with augmented states in partially expectation and action observable environment
    Guirnaldo, SA
    Watanabe, K
    Izumi, K
    Kiguchi, K
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 823 - 828
  • [44] First-order quantum correction in coherent state expectation value of loop-quantum-gravity Hamiltonian
    Zhang, Cong
    Song, Shicong
    Han, Muxin
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [45] Investigating students' conceptual difficulties on commutation relations and expectation value problems in quantum mechanics
    Ozcan, Ozgur
    ERPA INTERNATIONAL CONGRESSES ON EDUCATION 2015 (ERPA 2015), 2016, 26
  • [46] Vague expectation value loss
    van Fraassen, BC
    PHILOSOPHICAL STUDIES, 2006, 127 (03) : 483 - 491
  • [47] Expectation Value of Spin Network
    Yamashita, Shinji
    Yamamoto, Takuo
    Oka, Tomonori
    PROGRESS OF THEORETICAL PHYSICS, 2011, 125 (06): : 1317 - 1323
  • [48] GAC VALUE EXCEEDS EXPECTATION
    BLANCK, C
    WATER & SEWAGE WORKS, 1980, 127 (01) : 40 - 42
  • [49] Vague Expectation Value Loss
    Bas C. Van Fraassen
    Philosophical Studies, 2006, 127 : 483 - 491
  • [50] EXPECTATION-VALUE DISTRIBUTIONS
    ULLAH, N
    PORTER, CE
    PHYSICAL REVIEW, 1965, 137 (5B): : 1394 - &