AN ATOMIC POPULATION AS THE EXPECTATION VALUE OF A QUANTUM OBSERVABLE

被引:70
|
作者
BADER, RFW
ZOU, PF
机构
[1] Department of Chemistry, McMaster University, Hamilton
关键词
D O I
10.1016/0009-2614(92)85367-J
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dirac defines an observable to be a real dynamical variable with a complete set of eigenstates. It is shown that the density operator rho = SIGMA(i) delta(r(i) - r), is a quantum-mechanical observable whose expectation value is the particle density and that the integral form of this operator, the number operator N, is also a quantum-mechanical observable whose expectation value is the average number of particles. The principle of stationary action defines the expectation value of the equation of motion for every observable. Using this principle it is demonstrated that an atomic population is the expectation value of the observable N when rho is the electron density operator. An atom and its population are defined in terms of experimentally measurable expectation values of the observables rho and N.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 50 条
  • [1] TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR PREDICTING THE EXPECTATION VALUE OF AN OBSERVABLE
    BALIAN, R
    VENERONI, M
    PHYSICAL REVIEW LETTERS, 1981, 47 (19) : 1353 - 1356
  • [2] Optimal estimation of a physical observable's expectation value for pure states
    Hayashi, A.
    Horibe, M.
    Hashimoto, T.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [3] Entropy as a bound for expectation values and variances of a general quantum mechanical observable
    Sarkar, Shubhayan
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (04)
  • [4] Determining the quantum expectation value by measuring a single photon
    Fabrizio Piacentini
    Alessio Avella
    Enrico Rebufello
    Rudi Lussana
    Federica Villa
    Alberto Tosi
    Marco Gramegna
    Giorgio Brida
    Eliahu Cohen
    Lev Vaidman
    Ivo P. Degiovanni
    Marco Genovese
    Nature Physics, 2017, 13 : 1191 - 1194
  • [5] Determining the quantum expectation value by measuring a single photon
    Piacentini, Fabrizio
    Avella, Alessio
    Rebufello, Enrico
    Lussana, Rudi
    Villa, Federica
    Tosi, Alberto
    Gramegna, Marco
    Brida, Giorgio
    Cohen, Eliahu
    Vaidman, Lev
    Degiovanni, Ivo P.
    Genovese, Marco
    NATURE PHYSICS, 2017, 13 (12) : 1191 - 1194
  • [6] Concentration of Measure for Quantum States with a Fixed Expectation Value
    Markus P. Müller
    David Gross
    Jens Eisert
    Communications in Mathematical Physics, 2011, 303 : 785 - 824
  • [7] Concentration of Measure for Quantum States with a Fixed Expectation Value
    Mueller, Markus P.
    Gross, David
    Eisert, Jens
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (03) : 785 - 824
  • [8] TIME-DEPENDENT VARIATIONAL PRINCIPLE FOR THE EXPECTATION VALUE OF AN OBSERVABLE - MEAN-FIELD APPLICATIONS
    BALIAN, R
    VENERONI, M
    ANNALS OF PHYSICS, 1985, 164 (02) : 334 - 410
  • [9] Quantum Observable
    Elmannai, Wafa
    Pande, Varun
    Shrestha, Ajay
    Elleithy, Khaled
    WORLD CONGRESS ON COMPUTER & INFORMATION TECHNOLOGY (WCCIT 2013), 2013,
  • [10] Atomic Radii Derived From the Expectation Value...r4
    Linker, Gerrit-Jan
    Swart, Marcel
    van Duijnen, Piet Th.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2025, 125 (07)