PHASE PORTRAITS FOR PARAMETRICALLY EXCITED PENDULA - AN EXERCISE IN MULTIDIMENSIONAL DATA VISUALIZATION

被引:2
|
作者
POTTINGER, D
TODD, S
RODRIGUES, I
MULLIN, T
SKELDON, A
机构
[1] UNIV OXFORD,CLARENDON LAB,OXFORD,ENGLAND
[2] IBM UNITED KINGDOM LTD,WINCHESTER SO23 9DR,ENGLAND
关键词
D O I
10.1016/0097-8493(92)90012-K
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Data visualisation techniques are used to investigate the five dimensional phase space of a system of two pendula excited by an oscillatory force. A sequence of phase portraits is obtained that vividly illustrates the system undergoing a bifurcation as the frequency of the excitation is varied in a certain range. Such pictures provide valuable information on the topological transformations that the system undergoes as it approaches chaotic motion. This data visualisation method can also be applied to other multidimensional problems where a phase portrait analysis is helpful.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 50 条
  • [1] Synchronous rotations in parametrically excited pendula
    Bhattacharjee, Shayak
    [J]. CHAOS, 2014, 24 (03)
  • [2] The dynamics of two parametrically excited pendula with impacts
    Quinn, DD
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (06): : 1975 - 1988
  • [3] Global chaos synchronization of coupled parametrically excited pendula
    Olusola, O. I.
    Vincent, U. E.
    Njah, A. N.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 1011 - 1022
  • [4] Global chaos synchronization of coupled parametrically excited pendula
    O. I. Olusola
    U. E. Vincent
    A. N. Njah
    [J]. Pramana, 2009, 73 : 1011 - 1022
  • [5] Transition to complete synchronization of two diffusively coupled chaotic parametrically excited pendula
    Satpathy, S.
    Ganguli, B.
    [J]. NONLINEAR DYNAMICS, 2017, 88 (03) : 2063 - 2069
  • [6] Transition to complete synchronization of two diffusively coupled chaotic parametrically excited pendula
    S. Satpathy
    B. Ganguli
    [J]. Nonlinear Dynamics, 2017, 88 : 2063 - 2069
  • [7] Asymptotic analysis of circular motions of base- and length-parametrically excited pendula
    A. Luongo
    A. Casalotti
    [J]. Nonlinear Dynamics, 2024, 112 : 757 - 773
  • [8] Asymptotic analysis of circular motions of base- and length-parametrically excited pendula
    Luongo, A.
    Casalotti, A.
    [J]. NONLINEAR DYNAMICS, 2024, 112 (02) : 757 - 773
  • [9] Multidimensional data visualization
    Pastizzo, MJ
    Erbacher, RF
    Feldman, LB
    [J]. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2002, 34 (02): : 158 - 162
  • [10] Multidimensional data visualization
    Matthew J. Pastizzo
    Robert F. Erbacher
    Laurie B. Feldman
    [J]. Behavior Research Methods, Instruments, & Computers, 2002, 34 : 158 - 162