Global chaos synchronization of coupled parametrically excited pendula

被引:3
|
作者
Olusola, O. I. [1 ]
Vincent, U. E. [2 ,3 ,4 ]
Njah, A. N. [1 ]
机构
[1] Univ Agr, Dept Phys, Abeokuta, Nigeria
[2] Tech Univ Clausthal, Dept Nonlinear Dynam & Stat Phys, Inst Theoret Phys, D-38678 Clausthal Zellerfeld, Germany
[3] Univ Lancaster, Dept Phys, Nonlinear Biomed Phys Div, Lancaster LA1 4YB, England
[4] Olabisi Onabanjo Univ, Dept Phys, Ago Iwoye, Nigeria
来源
PRAMANA-JOURNAL OF PHYSICS | 2009年 / 73卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Chaos; synchronization; boundary crisis; parametrically excited pendula; Lyapunov theory; linear matrix inequality; PHASE SYNCHRONIZATION; SPATIOTEMPORAL CHAOS; OSCILLATORS; DYNAMICS;
D O I
10.1007/s12043-009-0163-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which an estimated critical coupling is determined. Numerical solutions are presented to verify the theoretical analysis. We also examined the transition to stable synchronous state and show that this corresponds to a boundary crisis of the chaotic attractor.
引用
收藏
页码:1011 / 1022
页数:12
相关论文
共 50 条
  • [1] Global chaos synchronization of coupled parametrically excited pendula
    O. I. Olusola
    U. E. Vincent
    A. N. Njah
    [J]. Pramana, 2009, 73 : 1011 - 1022
  • [2] Transition to complete synchronization of two diffusively coupled chaotic parametrically excited pendula
    Satpathy, S.
    Ganguli, B.
    [J]. NONLINEAR DYNAMICS, 2017, 88 (03) : 2063 - 2069
  • [3] Transition to complete synchronization of two diffusively coupled chaotic parametrically excited pendula
    S. Satpathy
    B. Ganguli
    [J]. Nonlinear Dynamics, 2017, 88 : 2063 - 2069
  • [4] Chaos synchronization of two parametrically excited pendulums
    Zhang, Y
    Hu, SQ
    Du, GH
    [J]. JOURNAL OF SOUND AND VIBRATION, 1999, 223 (02) : 247 - 254
  • [5] Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control
    Wu, Xiaofeng
    Cai, Jianping
    Wang, Muhong
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (01) : 121 - 128
  • [6] Synchronization of chaos in non-identical parametrically excited systems
    Idowu, B. A.
    Vincent, U. E.
    Njah, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2322 - 2331
  • [7] Synchronous rotations in parametrically excited pendula
    Bhattacharjee, Shayak
    [J]. CHAOS, 2014, 24 (03)
  • [8] Parameter estimations of parametrically excited pendulums based on chaos feedback synchronization
    Zhang, Y
    Tao, C
    Du, G
    Jiang, JJ
    [J]. JOURNAL OF SOUND AND VIBRATION, 2006, 290 (3-5) : 1091 - 1099
  • [9] Synchronization and Clustering in Coupled Parametrically Excited Oscillators with Small Mismatch
    Oi, Kosuke
    Uwate, Yoko
    Nishio, Yoshifumi
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 910 - 913
  • [10] The dynamics of two parametrically excited pendula with impacts
    Quinn, DD
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (06): : 1975 - 1988