Chaos synchronization of two parametrically excited pendulums

被引:18
|
作者
Zhang, Y [1 ]
Hu, SQ
Du, GH
机构
[1] Nanjing Univ, Inst Acoust, Nanjing 210093, Peoples R China
[2] Nanjing Univ, State Key Lab Modern Acoust, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jsvi.1998.2121
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Two desynchronous parametrically excited chaos pendulums demonstrate a type of hyperchaotic behavior. This paper presents a periodic feedback scheme to synchronize the two pendulum subsystems. The synchronization principle is investigated. Feedback control parameters are discussed. The synchronous parameter intervals in which the maximum transverse Lyapunov exponent is negative guarantee the achievement of synchronization. Two originally unrelated tumbling chaos pendulums can be synchronized by this method in the intervals. (C) 1999 Academic Press.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [1] Chaos synchronization of two parametrically excited pendulums
    Inst. Acoust. Stt. Key Lab. Mod. A., Nanjing University, Nanjing, 210093, China
    [J]. J Sound Vib, 2 (247-254):
  • [2] Parameter estimations of parametrically excited pendulums based on chaos feedback synchronization
    Zhang, Y
    Tao, C
    Du, G
    Jiang, JJ
    [J]. JOURNAL OF SOUND AND VIBRATION, 2006, 290 (3-5) : 1091 - 1099
  • [3] Global chaos synchronization of coupled parametrically excited pendula
    Olusola, O. I.
    Vincent, U. E.
    Njah, A. N.
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (06): : 1011 - 1022
  • [4] Global chaos synchronization of coupled parametrically excited pendula
    O. I. Olusola
    U. E. Vincent
    A. N. Njah
    [J]. Pramana, 2009, 73 : 1011 - 1022
  • [5] Synchronization of chaos in non-identical parametrically excited systems
    Idowu, B. A.
    Vincent, U. E.
    Njah, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2322 - 2331
  • [6] Robust finite-time synchronization of chaotic parametrically excited pendulums with multiple uncertainties
    Chen Yun
    Ye Qing
    Zhou Dawei
    Chen Lu
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 952 - 956
  • [7] Chaos of a parametrically excited undamped pendulum
    Lu, Chunqing
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (01) : 45 - 57
  • [8] Global synchronization of two parametrically excited systems using active control
    Lei, YM
    Xu, W
    Shen, JW
    Fang, T
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (02) : 428 - 436
  • [9] Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control
    Wu, Xiaofeng
    Cai, Jianping
    Wang, Muhong
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (01) : 121 - 128
  • [10] Chaos in the Periodically Parametrically Excited Lorenz System
    Huang, Weisheng
    Yang, Xiao-Song
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (08):