Universality of One-Dimensional Reversible and Number-Conserving Cellular Automata

被引:1
|
作者
Morita, Kenichi [1 ]
机构
[1] Hiroshima Univ, Dept Informat Engn, Higashihiroshima 7398527, Japan
关键词
D O I
10.4204/EPTCS.90.12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study one-dimensional reversible and number-conserving cellular automata (RNCCA) that have both properties of reversibility and number-conservation. In the case of 2-neighbor RNCCA, Garcia-Ramos proved that every RNCCA shows trivial behavior in the sense that all the signals in the RNCCA do not interact each other. However, if we increase the neighborhood size, we can find many complex RNCCAs. Here, we show that for any one-dimensional 2-neighbor reversible partitioned CA (RPCA) with s states, we can construct a 4-neighbor RNCCA with 4s states that simulates the former. Since it is known that there is a computationally universal 24-state 2-neighbor RPCA, we obtain a universal 96-state 4-neighbor RNCCA.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 50 条
  • [21] Firing squad synchronization problem in number-conserving cellular automata
    Imai, K
    Morita, K
    Sako, K
    FUNDAMENTA INFORMATICAE, 2002, 52 (1-3) : 133 - 141
  • [22] A split-and-perturb decomposition of number-conserving cellular automata
    Wolnik, Barbara
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 413 (413)
  • [23] Non-uniform number-conserving elementary cellular automata
    Wolnik, Barbara
    Dziemianczuk, Maciej
    De Baets, Bernard
    INFORMATION SCIENCES, 2023, 626 : 851 - 866
  • [24] Particle Complexity of Universal Finite Number-Conserving Cellular Automata
    Alhazov, Artiom
    Imai, Katsunobu
    2016 FOURTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2016, : 209 - 214
  • [25] A Characterization of von Neumann Neighbor Number-Conserving Cellular Automata
    Tanimoto, Naonori
    Imai, Katsunobu
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (01) : 39 - 53
  • [26] Enumeration of number-conserving cellular automata rules with two inputs
    Fuks, Henryk
    Sullivan, Kate
    JOURNAL OF CELLULAR AUTOMATA, 2007, 2 (02) : 141 - 148
  • [27] A Construction Method of Moore Neighborhood Number-Conserving Cellular Automata
    Tanimoto, Naonori
    Imai, Katsunobu
    CELLULAR AUTOMATA, PROCEEDINGS, 2008, 5191 : 244 - 251
  • [28] State-conserving one-dimensional cellular automata with radius one
    Wolnik, Barbara
    Dziemianczuk, Maciej
    De Baets, Bernard
    NONLINEAR DYNAMICS, 2025, : 15393 - 15405
  • [29] Simple universal one-dimensional reversible cellular automata
    Morita, Kenichi
    JOURNAL OF CELLULAR AUTOMATA, 2007, 2 (02) : 159 - 165
  • [30] Spectral properties of reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martinez, GJ
    McIntosh, HV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (03): : 379 - 395