Coincidences in numbers of graph vertices corresponding to regular planar hyperbolic mosaics

被引:0
|
作者
Nemeth, Laszlo [1 ]
Szalay, Laszlo [1 ]
机构
[1] Univ West Hungary, Inst Math, Sopron, Hungary
来源
关键词
regular planar hyperbolic mosaics; linear recurrences; diophantine equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to determine the elements which are in two pairs of sequences linked to the regular mosaics {4, 5} and {p, q} on the hyperbolic plane. The problem leads to the solution of diophantine equations of certain types.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [31] Complete Graph-Tree Planar Ramsey Numbers
    Chen, Yaojun
    Hu, Xiaolan
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1659 - 1671
  • [32] The rainbow numbers of cycles in maximal bipartite planar graph
    Ren, Lei
    Lan, Yongxin
    Xu, Changqing
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 37 - 43
  • [33] Recurrence sequences in the hyperbolic Pascal triangle corresponding to the regular mosaic {4, 5}
    Nemeth, Laszlo
    Szalay, Laszlo
    ANNALES MATHEMATICAE ET INFORMATICAE, 2016, 46 : 165 - 173
  • [34] ON THE NUMBERS OF CUT-VERTICES AND END-BLOCKS IN 4-REGULAR GRAPHS
    Wang, Dingguo
    Shan, Erfang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 127 - 136
  • [36] Algorithmic Aspects of Regular Graph Covers with Applications to Planar Graphs
    Fiala, Jiri
    Klavik, Pavel
    Kratochvil, Jan
    Nedela, Roman
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 489 - 501
  • [37] Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Corresponding to Regular Polyhedra
    Fujii, Shota
    Yamada, Shimpei
    Matsumoto, Sakiko
    Kubo, Genki
    Yoshida, Kenta
    Tabata, Eri
    Miyake, Rika
    Sanada, Yusuke
    Akiba, Isamu
    Okobira, Tadashi
    Yagi, Naoto
    Mylonas, Efstratios
    Ohta, Noboru
    Sekiguchi, Hiroshi
    Sakurai, Kazuo
    SCIENTIFIC REPORTS, 2017, 7
  • [38] Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Corresponding to Regular Polyhedra
    Shota Fujii
    Shimpei Yamada
    Sakiko Matsumoto
    Genki Kubo
    Kenta Yoshida
    Eri Tabata
    Rika Miyake
    Yusuke Sanada
    Isamu Akiba
    Tadashi Okobira
    Naoto Yagi
    Efstratios Mylonas
    Noboru Ohta
    Hiroshi Sekiguchi
    Kazuo Sakurai
    Scientific Reports, 7
  • [39] On the crossing numbers of join of one graph on six vertices with path using cyclic permutation
    Drazenska, Emilia
    39TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2021), 2021, : 72 - 82
  • [40] Planar embeddability of the vertices of a graph using a fixed point set is NP-hard
    Department of Mathematics, IMFM and FMF, University of Ljubljana, Slovenia
    J. Graph Algorithms and Appl., 2006, 2 (353-363):