BOUNDS FOR THE VERTEX LINEAR ARBORICITY

被引:20
|
作者
MATSUMOTO, M
机构
[1] Department of Mathematics, Faculty of Science, University of Tokyo, Tokyo, Hongo, Bunkyo‐Ku
关键词
D O I
10.1002/jgt.3190140113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The vertex linear arboricity vla(G) of a nonempty graph G is the minimum number of subsets into which the vertex set V(G) can be partitioned so that each subset induces a subgraph whose connected components are paths. This paper provides an upper bound for vla(G) of a connected nonempty graph G, namely vla(G) ≦ 1 + ⌊δ(G)/2⌋ where δ(G) denotes the maximum degree of G. Moreover, if δ(G) is even, then vla(G) = 1 + ⌊δ(G)/2⌋ if and only if G is either a cycle or a complete graph. Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company
引用
收藏
页码:117 / 126
页数:10
相关论文
共 50 条
  • [1] Upper bounds on linear vertex-arboricity of complementary graphs
    Alavi, Y
    Erdos, P
    Lam, PCB
    Lick, D
    Liu, JQ
    Wang, JF
    [J]. UTILITAS MATHEMATICA, 1997, 52 : 43 - 48
  • [2] The fractional vertex linear arboricity of graphs
    Zuo, Lian-Cui
    Wu, Jian-Liang
    Liu, Jia-Zhuang
    [J]. ARS COMBINATORIA, 2006, 81 : 175 - 191
  • [3] The vertex linear arboricity of distance graphs
    Zuo, LC
    Wu, JL
    Liu, JZ
    [J]. DISCRETE MATHEMATICS, 2006, 306 (02) : 284 - 289
  • [4] ON LINEAR VERTEX-ARBORICITY OF COMPLEMENTARY GRAPHS
    ALAVI, Y
    LIU, JQ
    WANG, JF
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (03) : 315 - 322
  • [5] ON THE LINEAR VERTEX-ARBORICITY OF A PLANAR GRAPH
    POH, KS
    [J]. JOURNAL OF GRAPH THEORY, 1990, 14 (01) : 73 - 75
  • [6] Vertex Arboricity and Vertex Degrees
    D. Bauer
    A. Nevo
    E. Schmeichel
    [J]. Graphs and Combinatorics, 2016, 32 : 1699 - 1705
  • [7] Vertex Arboricity and Vertex Degrees
    Bauer, D.
    Nevo, A.
    Schmeichel, E.
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1699 - 1705
  • [8] Circular vertex arboricity
    Wang, Guanghui
    Zhou, Shan
    Liu, Guizhen
    Wu, Jianliang
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1231 - 1238
  • [9] Interpolation Theorems for the Arboricity and the Vertex Arboricity of Graphs
    Khoployklang, Teerasak
    Chaemchan, Araya
    [J]. THAI JOURNAL OF MATHEMATICS, 2024, 22 (01): : 285 - 293
  • [10] The Vertex Linear Arboricity of a Special Class of Integer Distance Graphs
    Zuo, Lian-Cui
    Li, Bang-Jun
    Wu, Jian-Liang
    [J]. ARS COMBINATORIA, 2013, 111 : 427 - 444