Vertex Arboricity and Vertex Degrees

被引:0
|
作者
D. Bauer
A. Nevo
E. Schmeichel
机构
[1] Stevens Institute of Technology,Department of Mathematical Sciences
[2] San José State University,Department of Mathematics
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Degree sequences; Vertex arboricity; Best monotone degree conditions ;
D O I
暂无
中图分类号
学科分类号
摘要
The vertex arboricity of a graph G, denoted a(G), is the minimum number of subsets into which V(G) can be partitioned so that each subset induces an acyclic graph. We first give a vertex degree condition to guarantee a(G)≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G) \le k$$\end{document}, which is best possible in the same sense as Chvátal’s well-known hamiltonian degree condition. We then explore comparably strong degree conditions for a(G)≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(G) \ge k$$\end{document}, and show that any such condition has intrinsic complexity which grows superpolynomially with the order of G.
引用
收藏
页码:1699 / 1705
页数:6
相关论文
共 50 条
  • [1] Vertex Arboricity and Vertex Degrees
    Bauer, D.
    Nevo, A.
    Schmeichel, E.
    [J]. GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1699 - 1705
  • [2] Circular vertex arboricity
    Wang, Guanghui
    Zhou, Shan
    Liu, Guizhen
    Wu, Jianliang
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1231 - 1238
  • [3] Interpolation Theorems for the Arboricity and the Vertex Arboricity of Graphs
    Khoployklang, Teerasak
    Chaemchan, Araya
    [J]. THAI JOURNAL OF MATHEMATICS, 2024, 22 (01): : 285 - 293
  • [4] BOUNDS FOR THE VERTEX LINEAR ARBORICITY
    MATSUMOTO, M
    [J]. JOURNAL OF GRAPH THEORY, 1990, 14 (01) : 117 - 126
  • [5] Fractional vertex arboricity of graphs
    Yu, Qinglin
    Zuo, Liancui
    [J]. DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 245 - +
  • [6] On the vertex-arboricity of planar
    Raspaud, Andre
    Wang, Weifan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 1064 - 1075
  • [7] Equitable vertex arboricity of graphs
    Wu, Jian-Liang
    Zhang, Xin
    Li, Hailuan
    [J]. DISCRETE MATHEMATICS, 2013, 313 (23) : 2696 - 2701
  • [8] On the equitable vertex arboricity of graphs
    Tao, Fangyun
    Lin, Wensong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (06) : 844 - 853
  • [9] VERTEX ARBORICITY AND MAXIMUM DEGREE
    CATLIN, PA
    LAI, HJ
    [J]. DISCRETE MATHEMATICS, 1995, 141 (1-3) : 37 - 46