NONLINEAR TIME-SERIES MODELING AND PREDICTION USING GAUSSIAN RBF NETWORKS

被引:74
|
作者
CHEN, S
机构
[1] Department of Electrical and Electronics Engineering, University of Portsmouth, Portsmouth PO 3DJ, Anglesea Building
关键词
NEUTRAL NETWORKS; TIME SERIES;
D O I
10.1049/el:19950085
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An improved clustering and recursive least squares (RLS) learning algorithm for Gaussian radial basis function (RBF) networks is described for modelling and predicting nonlinear time series. Significant performance gain can be achieved with a much smaller network compared with the usual clustering and RLS method.
引用
收藏
页码:117 / 118
页数:2
相关论文
共 50 条
  • [41] NONLINEAR MODELING OF TIME-SERIES USING MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)
    LEWIS, PAW
    STEVENS, JG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 864 - 877
  • [42] RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION
    CONNOR, JT
    MARTIN, RD
    ATLAS, LE
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02): : 240 - 254
  • [43] TIME-SERIES PREDICTION USING SELF-ORGANIZING FUZZY NEURAL NETWORKS
    Wang, Ning
    Meng, Xian-yao
    [J]. 2009 IEEE YOUTH CONFERENCE ON INFORMATION, COMPUTING AND TELECOMMUNICATION, PROCEEDINGS, 2009, : 367 - +
  • [44] Prediction of InSAR time-series deformation using deep convolutional neural networks
    Ma, Peifeng
    Zhang, Fan
    Lin, Hui
    [J]. REMOTE SENSING LETTERS, 2020, 11 (02) : 137 - 145
  • [45] Prediction of time series using wavelet Gaussian process for wireless sensor networks
    Jose Mejia
    Alberto Ochoa-Zezzatti
    Oliverio Cruz-Mejía
    Boris Mederos
    [J]. Wireless Networks, 2020, 26 : 5751 - 5758
  • [46] Prediction of time series using wavelet Gaussian process for wireless sensor networks
    Mejia, Jose
    Ochoa-Zezzatti, Alberto
    Cruz-Mejia, Oliverio
    Mederos, Boris
    [J]. WIRELESS NETWORKS, 2020, 26 (08) : 5751 - 5758
  • [47] Multivariate time-series modeling with generative neural networks
    Hofert, Marius
    Prasad, Avinash
    Zhu, Mu
    [J]. ECONOMETRICS AND STATISTICS, 2022, 23 : 147 - 164
  • [48] Trend time-series modeling and forecasting with neural networks
    Qi, Min
    Zhang, G. Peter
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (05): : 808 - 816
  • [49] Modeling financial time-series with generative adversarial networks
    Takahashi, Shuntaro
    Chen, Yu
    Tanaka-Ishii, Kumiko
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 527
  • [50] Nonlinear time series modeling and prediction using functional networks. Extracting information masked by chaos
    Castillo, E
    Gutierrez, JM
    [J]. PHYSICS LETTERS A, 1998, 244 (1-3) : 71 - 84