SUPER TODA-LATTICES

被引:0
|
作者
VANDERLENDE, ED [1 ]
PIJLS, HGJ [1 ]
机构
[1] UNIV AMSTERDAM,DEPT MATH & COMP SCI,AMSTERDAM,NETHERLANDS
关键词
D O I
10.1007/BF00996118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:297 / 298
页数:2
相关论文
共 50 条
  • [41] Discrete Toda lattices and the Laplace method
    Vereschagin, V. L.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (03) : 1229 - 1237
  • [42] Solutions to the hierarchy of the periodic Toda lattices
    Trlifaj, L
    INVERSE AND ALGEBRAIC QUANTUM SCATTERING THEORY, 1997, 488 : 227 - 236
  • [43] Energy control of nonhomogeneous Toda lattices
    Firdaus E. Udwadia
    Harshavardhan Mylapilli
    Nonlinear Dynamics, 2015, 81 : 1355 - 1380
  • [44] Complex high order Toda and Volterra lattices
    Barrios Rolania, D.
    Branquinho, A.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (02) : 197 - 213
  • [45] Bargmann Type Systems for the Generalization of Toda Lattices
    Li, Fang
    Lu, Liping
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [46] Group factorization, moment matrices, and Toda lattices
    Adler, M
    vanMoerbeke, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (12) : 555 - 572
  • [47] Factorization Dynamics and Coxeter--Toda Lattices
    Tim Hoffmann
    Johannes Kellendonk
    Nadja Kutz
    Nicolai Reshetikhin
    Communications in Mathematical Physics, 2000, 212 : 297 - 321
  • [48] Extensive packet excitations in FPU and Toda lattices
    Christodoulidi, H.
    EPL, 2017, 119 (04)
  • [49] Integration of toda lattices with steplike initial data
    Khanmamedov, Ag. Kh.
    Asadova, L. K.
    DOKLADY MATHEMATICS, 2013, 87 (01) : 36 - 38
  • [50] Bihamiltonian Geometry and Separation of Variables for Toda Lattices
    Gregorio Falqui
    Franco Magri
    Marco Pedroni
    Journal of Nonlinear Mathematical Physics, 2001, 8 : 118 - 127