ALMOST SURE QUASILOCALITY IN THE RANDOM CLUSTER MODEL

被引:16
|
作者
PFISTER, CE [1 ]
VELDE, KV [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN,INST THEORET FYS,B-3001 LOUVAIN,BELGIUM
关键词
RANDOM CLUSTER MODEL; NON-GIBBS SLATES; QUASILOCALITY OF CONDITIONAL DISTRIBUTIONS;
D O I
10.1007/BF02184883
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the Gibbsianness of the random cluster measures mu(q,p) and ($) over tilde mu(q,p), obtained as the infinite-volume limit of finite-volume measures with free and wired boundary conditions. For q > 1, the measures are not Gibbs measures, but it turns out that the conditional distribution on one edge, given the configuration outside that edge, is almost surely quasilocal.
引用
收藏
页码:765 / 774
页数:10
相关论文
共 50 条
  • [21] An almost sure invariance principle for the range of random walks
    Hamana, YJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 78 (02) : 131 - 143
  • [22] Almost sure central limit theorems for random functions
    Chuanrong Lu
    Jin Qiu
    Jianjun Xu
    Science in China Series A: Mathematics, 2006, 49 : 1788 - 1799
  • [23] Almost Sure Convergence for the Maximum of Nonstationary Random Fields
    Pereira, Luisa
    Tan, Zhongquan
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (03) : 996 - 1013
  • [24] ALMOST SURE CONVERGENCE IN LINEAR SPACES OF RANDOM VARIABLES
    MUSHTARI, DK
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (02): : 337 - &
  • [25] ALMOST SURE BOOTSTRAP OF THE MEAN UNDER RANDOM NORMALIZATION
    SEPANSKI, SJ
    ANNALS OF PROBABILITY, 1993, 21 (02): : 917 - 925
  • [26] Almost-sure asymptotics for Riemannian random waves
    Gass, Louis
    BERNOULLI, 2023, 29 (01) : 625 - 651
  • [27] On Exponential Almost Sure Stability of Random Jump Systems
    Li, Chanying
    Chen, Michael Z. Q.
    Lam, James
    Mao, Xuerong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (12) : 3064 - 3077
  • [28] ON THE ALMOST SURE BEHAVIOR OF SUMS OF RANDOM-VARIABLES
    PETROV, VV
    STATISTICS & PROBABILITY LETTERS, 1995, 24 (03) : 229 - 231
  • [29] Almost sure convergence of urn models in a random environment
    Moler J.A.
    Plo F.
    San Miguel M.
    Journal of Mathematical Sciences, 2002, 111 (3) : 3566 - 3571
  • [30] OPTIMAL STOPPING AND ALMOST SURE CONVERGENCE OF RANDOM SEQUENCES
    ENGELBERT, A
    ENGELBERT, HJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (03): : 309 - 325