THE INDEPENDENT DOMINATION NUMBER OF A CUBIC 3-CONNECTED GRAPH CAN BE MUCH LARGER THAN ITS DOMINATION NUMBER

被引:18
|
作者
KOSTOCHKA, AV [1 ]
机构
[1] RUSSIAN ACAD SCI, INST MATH, NOVOSIBIRSK 630090, RUSSIA
关键词
D O I
10.1007/BF02988312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the difference between independent domination number of a cubic 3-connected graph and its domination number can be arbitrarily large. This disproves a conjecture posed in Graphs and Combinatorics by C. Barefoot, F. Harary, and K.F. Jones [2].
引用
收藏
页码:235 / 237
页数:3
相关论文
共 50 条
  • [11] Forcing Independent Domination Number of a Graph
    Armada, Cris L.
    Canoy, Sergio, Jr.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1371 - 1381
  • [12] THE INDEPENDENT DOMINATION NUMBER OF RANDOM GRAPH
    Wang, Changping
    UTILITAS MATHEMATICA, 2010, 82 : 161 - 166
  • [13] Every 3-connected claw-free graph with domination number at most 3 is hamiltonian-connected
    Vrana, Petr
    Zhan, Xingzhi
    Zhang, Leilei
    DISCRETE MATHEMATICS, 2022, 345 (08)
  • [14] The connected monophonic eccentric domination number of a graph
    Titus, P.
    Fancy, J. Ajitha
    Joshi, Gyanendra Prasad
    Amutha, S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 6451 - 6460
  • [15] Global outer connected domination number of a graph
    Alishahi, Morteza
    Mojdeh, Doost Ali
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (01): : 18 - 26
  • [16] DOUBLY CONNECTED EDGE DOMINATION NUMBER OF A GRAPH
    Anupama, S. B.
    Maralabhavi, Y. B.
    Goudar, Venkanagouda M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 15 (02): : 91 - 99
  • [17] Extremal connected graphs for independent domination number
    Brigham, RC
    Carrington, JR
    Vitray, RP
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 299 - 309
  • [18] A note on the independent domination number of subset graph
    Xue-gang Chen
    De-xiang Ma
    Hua-Ming Xing
    Liang Sun
    Czechoslovak Mathematical Journal, 2005, 55 : 511 - 517
  • [19] On the domination number of a graph and its shadow graph
    Murugan, E.
    Sivaprakash, G. R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (06)
  • [20] On the domination number of a graph and its total graph
    Murugan, E.
    Joseph, J. Paulraj
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)