TIMENET - A TOOLKIT FOR EVALUATING NON-MARKOVIAN STOCHASTIC PETRI NETS

被引:0
|
作者
GERMAN, R
KELLING, C
ZIMMERMANN, A
HOMMEL, G
机构
[1] Institut für Technische Informatik, Fachgebiet Prozeßdatenverarbeitung und Robotik (Real-Time Systems and Robotics), Technische Universität Berlin, 10587 Berlin
关键词
PERFORMANCE AND DEPENDABILITY MODELING TOOL; ANALYSIS AND SIMULATION OF STOCHASTIC PETRI NETS; GRAPHICAL USER INTERFACE;
D O I
10.1016/0166-5316(95)00010-U
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes TimeNET (Timed Net Evaluation Tool), a software package for the modeling and evaluation of stochastic Petri nets with non-exponentially distributed firing times. TimeNET has been developed at the Technische Universitat Berlin in several research projects. A graphical user interface is provided for the model specification and specialized analysis and simulation components are used for the automated model evaluation. The implementation of the analysis and simulation components is based on recent research results. Both the general structure and the underlying algorithms of TimeNET are described. An example illustrates the modeling and evaluation process using TimeNET.
引用
收藏
页码:69 / 87
页数:19
相关论文
共 50 条
  • [31] Quantum Non-Markovian Stochastic Equations
    G. G. Adamian
    N. V. Antonenko
    Z. Kanokov
    V. V. Sargsyan
    [J]. Theoretical and Mathematical Physics, 2005, 145 : 1443 - 1456
  • [32] Stochastic Continuous Petri Nets: An Approximation of Markovian Net Models
    Renato Vazquez, C.
    Silva, Manuel
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2012, 42 (03): : 641 - 653
  • [33] Markovian embedding procedures for non-Markovian stochastic Schrodinger equations
    Li, Xiantao
    [J]. PHYSICS LETTERS A, 2021, 387
  • [34] Non-Markovian stochastic Liouville equation and its Markovian representation
    Shushin, AI
    [J]. PHYSICAL REVIEW E, 2003, 67 (06): : 1 - 061107
  • [35] Availability modeling of a virtualized IP multimedia subsystem using non-Markovian stochastic reward nets
    Di Mauro, M.
    Galatro, G.
    Longo, M.
    Postiglione, F.
    Tambasco, M.
    [J]. SAFETY AND RELIABILITY - SAFE SOCIETIES IN A CHANGING WORLD, 2018, : 2427 - 2434
  • [36] Stochastic resonance of non-Markovian renewal processes
    Hu, Minghui
    Shao, Huihe
    [J]. MODERN PHYSICS LETTERS B, 2008, 22 (02): : 147 - 154
  • [37] Stochastic analysis for a non-Markovian generator: an introduction
    Leandre, R.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2015, 22 (01) : 39 - 52
  • [38] STOCHASTIC QUANTIZATION, NON-MARKOVIAN REGULARIZATION AND RENORMALIZATION
    IENGO, R
    PUGNETTI, S
    [J]. NUCLEAR PHYSICS B, 1988, 300 (01) : 128 - 142
  • [39] A Gillespie Algorithm for Non-Markovian Stochastic Processes
    Masuda, Naoki
    Rocha, Luis E. C.
    [J]. SIAM REVIEW, 2018, 60 (01) : 95 - 115
  • [40] Stochastic Impulse Control of Non-Markovian Processes
    Djehiche, Boualem
    Hamadene, Said
    Hdhiri, Ibtissam
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 61 (01): : 1 - 26