SPLIT BRAIDS

被引:2
|
作者
HUMPHRIES, SP
机构
关键词
BRAID GROUP; ALGORITHM;
D O I
10.2307/2048434
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B(n) be the group of braids on n strings with standard generators sigma-1, ... , sigma-n-1. For i is-an-element-of {1, 2, ..., n-1} we let B(n)i be the subgroup of B(n) generated by the elements sigma-1, ..., sigma-i-1, sigma-i+1, ..., sigma-n-1. In this paper we give an algorithm for deciding if, given alpha is-an-element-of B(n) there is i is-an-element-of {1, 2, ..., n - 1} such that alpha is conjugate into B(n)i. We call such a braid a split braid. Such a split braid gives rise to a split link. This algorithm gives a partial solution to the problem of finding braids that represent reducible mapping classes. It also represents a contribution to the algebraic link problem and it gives a way of determining if a braid in B(n) can be conjugated into the subgroup B(n-1), which we identify with B(n-1)n-1.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [31] AROUND BRAIDS
    Vershinin, Vladimir
    COMBINATORIAL AND TORIC HOMOTOPY: INTRODUCTORY LECTURES, 2018, 35 : 179 - 228
  • [32] Palindromic braids
    Deloup, Florian
    Garber, David
    Kaplan, Shmuel
    Teicher, Mina
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (01) : 65 - 71
  • [33] Simple braids
    Ashraf, Rehana
    Berceanu, Barbu
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (03) : 646 - 660
  • [34] BRAIDS AND PERMUTATIONS
    ARTIN, E
    ANNALS OF MATHEMATICS, 1947, 48 (03) : 643 - 649
  • [35] SHERLAYNE BRAIDS
    ROSEN, RA
    ANNALS OF EMERGENCY MEDICINE, 1995, 25 (03) : 428 - 429
  • [36] On the genericity of pseudo-Anosov braids I: rigid braids
    Caruso, Sandrine
    GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (02) : 533 - 547
  • [37] Vector braids
    Moulton, VL
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 131 (03) : 245 - 296
  • [38] Braids and movies
    Carter, JS
    Saito, M
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1996, 5 (05) : 589 - 608
  • [39] Entropies of braids
    Song, WT
    Ko, KH
    Los, JE
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (04) : 647 - 666
  • [40] THEORY OF BRAIDS
    ARTIN, E
    ANNALS OF MATHEMATICS, 1947, 48 (01) : 101 - 125