COROLLARIES OF GOLDSTONE THEOREM

被引:6
|
作者
FRISHMAN, Y
KATZ, A
机构
关键词
D O I
10.1103/PhysRevLett.16.370
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:370 / &
相关论文
共 50 条
  • [21] ON A FRANKL-WILSON THEOREM AND ITS GEOMETRIC COROLLARIES
    Sagdeev, A. A.
    Raigorodskii, A. M.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1029 - 1033
  • [22] On the matching method and the Goldstone theorem in holography
    Borut Bajc
    Adrián R. Lugo
    [J]. Journal of High Energy Physics, 2013
  • [23] The Goldstone equivalence theorem and AdS/CFT
    Nikhil Anand
    Sean Cantrell
    [J]. Journal of High Energy Physics, 2015
  • [24] PROOFS OF GOLDSTONE THEOREM FOR NONRELATIVISTIC SYSTEMS
    LANGE, RV
    [J]. PHYSICS LETTERS A, 1968, A 27 (06) : 390 - &
  • [25] Kaon condensation and Goldstone's theorem
    Schäfer, T
    Son, DT
    Stephanov, MA
    Toublan, D
    Verbaarschot, JJM
    [J]. PHYSICS LETTERS B, 2001, 522 (1-2) : 67 - 75
  • [26] On the matching method and the Goldstone theorem in holography
    Bajc, Borut
    Lugo, Adrian R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07):
  • [27] GOLDSTONE THEOREM AT FINITE TEMPERATURE AND DENSITY
    KOWALSKI, KL
    [J]. PHYSICAL REVIEW D, 1987, 35 (12): : 3940 - 3943
  • [28] The Goldstone equivalence theorem and AdS/CFT
    Anand, Nikhil
    Cantrell, Sean
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [29] TEST OF GOLDSTONE BOSON EQUIVALENCE THEOREM
    DUTTA, B
    NANDI, S
    [J]. MODERN PHYSICS LETTERS A, 1994, 9 (11) : 1025 - 1032
  • [30] Nobel Lecture: Evading the Goldstone theorem
    Higgs, Peter W.
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (03) : 851 - 853