ALGEBRAIC INDEPENDENCE OF RECIPROCAL SUMS OF POWERS OF CERTAIN FIBONACCI-TYPE NUMBERS

被引:0
|
作者
Bundschuh, Peter [1 ]
Vaananen, Keijo [2 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Univ Oulu, Dept Math Sci, Oulu 90014, Finland
关键词
algebraic independence of numbers; Mahler's method; algebraic independence o functions;
D O I
10.7169/facm/2015.53.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fibonacci-type numbers in the title look like R-n = g(1)gamma(n)(1) + g(2)gamma(n)(2) and S-n = h(1)gamma(n)(1) + h(2)gamma(n)(2) for any n is an element of Z, where the g's, h's, and gamma's are given algebraic numbers satisfying certain natural conditions. For fixed k is an element of Z(>0), and for fixed non-zero periodic sequences (a(h)), (b(h)), (c(h)) of algebraic numbers, the algebraic independence of the series Sigma(infinity)(h=0) a(h)/gamma(krh)(1), Sigma(infinity)(h=0)' b(h)/(R-kr(+l)h)(m), Sigma(infinity)(h=0)' c(h)/(S-kr(+l)h)(m) ((l, m, r) is an element of z x z(>0) x z(>1)) is studied. Here the main tool is Mahler's method which reduces the investigation of the algebraic independence of numbers (over Q) to that of functions (over the rational function field) if they satisfy certain types of functional equations.
引用
收藏
页码:47 / 68
页数:22
相关论文
共 50 条
  • [1] Some Arithmetical Results on Reciprocal Sums of Certain Fibonacci-Type Numbers
    Bundschuh, Peter
    Vaananen, Keijo
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (06) : 797 - 814
  • [2] Algebraic independence results for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. ACTA ARITHMETICA, 2011, 148 (03) : 205 - 223
  • [3] Algebraic independence results for reciprocal sums of Fibonacci and Lucas numbers
    Stein, Martin
    [J]. DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 101 - 107
  • [4] ALGEBRAIC INDEPENDENCE OF MODIFIED RECIPROCAL SUMS OF PRODUCTS OF FIBONACCI NUMBERS
    Tanaka, Taka-aki
    [J]. TSUKUBA JOURNAL OF MATHEMATICS, 2006, 30 (02) : 341 - 357
  • [5] Algebraic relations for reciprocal sums of Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. ACTA ARITHMETICA, 2007, 130 (01) : 37 - 60
  • [6] Algebraic independence of sums of reciprocals of the Fibonacci numbers
    Nishioka, K
    Tanaka, A
    Toshimitsu, T
    [J]. MATHEMATISCHE NACHRICHTEN, 1999, 202 : 97 - 108
  • [7] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. RAMANUJAN JOURNAL, 2008, 17 (03): : 429 - 446
  • [8] Algebraic relations for reciprocal sums of even terms in Fibonacci numbers
    Elsner C.
    Shimomura S.
    Shiokawa I.
    [J]. Journal of Mathematical Sciences, 2012, 180 (5) : 650 - 671
  • [9] Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers
    Elsner, Carsten
    Shimomura, Shun
    Shiokawa, Iekata
    [J]. DIOPHANTINE ANALYSIS AND RELATED FIELDS 2011 (DARF 2011), 2011, 1385 : 17 - +
  • [10] Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers
    C. Elsner
    S. Shimomura
    I. Shiokawa
    [J]. The Ramanujan Journal, 2008, 17 : 429 - 446